간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (51,300원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (37,800원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (43,200원)
(최대할인 4만원 / 2만원 이상 결제)
Close

통계학으로 배우는 머신러닝 2/e : 스탠퍼드대학교 통계학과 교수에게 배우는 머신러닝의 원리[양장]

원제 : The Elements of Statistical Learning
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 37
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

60,000원

  • 54,000 (10%할인)

    3,000P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 7/7(목) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(71)

  • 상품권

AD

책소개

머신러닝을 통한 모델 학습을 통계학적 체계 내에서 설명한다. 다양한 통계 이론을 살펴보고, 회귀에서 신경망에 이르는 머신러닝 알고리즘에서 이들이 어떠한 의의가 있는지 배울 수 있다. 단순히 머신러닝 모델을 적용하는 것을 넘어 모델의 이론적 배경을 이해함으로써 데이터에서 더욱 깊은 인사이트를 얻고자 하는 사람에게 추천한다.

출판사 서평

★ 이 책의 대상 독자 ★

통계학, 인공지능, 공학, 금융 등 다양한 분야의 연구자와 학생을 위해 썼다. 이 책을 읽는 독자가 선형회귀를 포함한 기본 주제를 다루는 통계학의 기초 강의를 적어도 하나는 수강했기를 기대한다.
학습법의 포괄적인 안내서를 쓰기보다는 가장 중요한 기술 몇 가지를 설명하고자 했다. 또한 하부 개념과 고려 사항을 설명해 연구자가 학습법을 판단할 수 있게 했다. 수학적 세부 사항보다는 개념을 강조해 직관적인 방식으로 작성했다.
우리는 자연스럽게 통계학자로서의 배경과 전문 분야를 반영하게 될 것이다. 그러나 과거 8년 동안 신경망, 데이터 마이닝과 머신러닝에 관한 콘퍼런스에 참여했으며, 이러한 흥미진진한 분야에 크게 영향을 받았다.


★ 이 책의 구성 ★

복잡한 방법을 완전히 파악하려 하기 전에 반드시 간단한 방법부터 이해해야 한다. 따라서 2장에서 지도 학습 문제에 관한 개요를 제공한 다음 3장과 4장에서 회귀와 분류를 위한 선형 방법을 논의한다. 5장에서는 단일 예측변수를 위한 스플라인(spline), 웨이블렛(wavelet)과 정칙화/벌점화법을 설명하며, 6장에서는 커널 방법과 국소 회귀(local regression)를 다룬다. 이들 방법 모두 고차원 학습 기법의 중요한 기본 토대가 된다. 모델 평가와 선택이 7장의 주제이며, 편향과 분산의 개념, 과적합 및 모형 선택을 위한 교차 검증과 같은 방법을 다룬다. 8장은 최대가능도, 베이지안 추론과 부트스트랩, EM 알고리즘, 깁스 샘플링, 배깅(bagging)의 개요를 포함해 모형 추론과 평균화에 관해 논의한다. 부스팅(boosting)이라 부르는 과정은 10장에서 집중적으로 다룬다.
9장부터 13장까지는 지도 학습을 위한 일련의 구조적 방법을 설명한다. 특히 9장과 11장에서는 회귀를 다루며 12장과 13장에서는 분류에 집중한다. 14장에서는 비지도 학습을 위한 방법에 관해 설명한다. 최근에 알려진 기법인 랜덤 포레스트와 앙상블 학습은 15장과 16장에서 논의한다. 무방향 그래프 모델은 17장에서 설명하며, 마지막으로 18장에서 고차원 문제를 공부한다.
각 장의 마지막에서는 관측치와 예측자의 개수에 따라 어떻게 연산이 확장되는지 등을 포함해 데이터 마이닝 응용법에 중요한 연산적 고려 사항에 관해 논의한다. 각 장은 자료를 위한 배경 참조를 제공하는 참고문헌으로 마무리된다.
먼저 1장부터 4장까지 순서대로 읽기를 추천한다. 7장 또한 모든 학습법에 관련된 핵심 개념을 다루므로 의무적으로 읽어야 한다. 책의 나머지는 독자의 흥미에 따라 순서대로 읽거나 혹은 선택해서 읽을 수 있다.

★ 옮긴이의 말 ★

이 책은 Springer에서 출간된 『Elements of Statistical Learning, Second Edition』을 번역한 것입니다. 원서의 공동 저자 3인은 모두 스탠퍼드대학교 통계학과 교수들로 탁월한 학문적 성과로 명성이 높은 분들이며, 이 책 또한 여러 논문에서 많이 인용되고 있습니다.
이 책의 서문을 펴 볼 정도로 머신러닝에 관심이 많은 독자 분이라면 통계학을 포장해 머신러닝이라고 부른다는 내용의 재미있는 밈(meme)을 보신 적이 있을 것입니다. 이러한 밈이 단순히 농담으로만 보이지 않는 것은 비단 저뿐만이 아닐 것입니다. 머신러닝을 더 잘 알기 위해서는 통계학을 피할 수 없다는 점이야말로 제가 이 책의 번역을 맡기로 한 근본적인 이유가 아닐까 합니다.
요즘은 문제를 무조건 딥러닝으로 해결하려는 분위기가 강합니다. 하지만 저자들이 1장에서 언급한 바와 같이 저 또한 복잡한 방법을 시도하기 전에 단순한 방법을 이해하는 것이 중요합니다. 물론 통계적, 수학적 지식이 부족하더라도 데이터에 머신러닝 모델을 적용하는 것은 어려운 일이 아닙니다. 그러나 이 책은 더 나아가 모델의 밑바탕에 깔린 개념을 폭넓게 이해함으로써, 주어진 문제를 해결하고 데이터로부터 더욱 깊은 통찰을 얻을 수 있는 실질적인 힘을 기르도록 도와줄 것입니다. 이 책과 함께 통계적 이론 및 회귀와 분류, 커널과 기저, 정칙화, 가법적 모델 등 여러 주제에 대해 더 깊이 공부할 수 있다면 향후 다양한 주제를 학습하는 데 큰 도움이 되리라 생각합니다.
저자들은 적어도 독자들이 기본적인 통계학을 수강했기를 기대하고 있지만, 이 책을 잘 이해하는 데 그 정도로 충분하다고 하기에는 힘든 것이 사실입니다. 책과 함께하면서 미적분학, 선형대수학, 확률론, 통계학 등 부족하다고 생각하는 부분을 함께 학습하시기를 권해드립니다. 원서의 정오표(https://web.stanford.edu/~hastie/ElemStatLearn/)는 웹사이트의 ‘Errata for the 2nd Edition, after 12th printing (January 2017) and not yet reflected in online version’을 기준으로 반영돼 있습니다. 용어는 한국통계학회(http://www.kss.or.kr/) 및 대한수학회(http://www.kms.or.kr/main.html)의 용어집을 표준으로 삼고자 했으며, 그 밖의 용어는 인터넷 검색을 통해 가장 빈번하게 쓰이는 용어를 사용하고자 노력했습니다.

목차

1장. 소개

2장. 지도 학습의 개요
__2.1 소개
__2.2 변수 타입과 용어
__2.3 예측을 위한 단순한 두 접근법: 최소 제곱과 최근접이웃
____2.3.1 선형 모델과 최소 제곱42
____2.3.2 최근접이웃 방법
____2.3.3 최소제곱에서 최근접이웃까지
__2.4 통계적 결정 이론
__2.5 고차원에서의 국소적 방법
__2.6 통계적 모델, 지도 학습 및 함수 근사60
____2.6.1 결합분포 Pr(X, Y )를 위한 통계적 모델
____2.6.2 지도 학습
____2.6.3 함수 근사
__2.7 구조화된 회귀 모델
____2.7.1 문제의 어려움
__2.8 제한된 추정량의 종류
____2.8.1 조도 벌점과 베이즈 방법
____2.8.2 커널법과 국소 회귀
____2.8.3 기저함수와 딕셔너리 방법
__2.9 모델 선택과 편향 - 분산 상반관계
__참고문헌
__연습 문제

3장. 회귀를 위한 선형법
__3.1 소개
__3.2 선형회귀 모델과 최소제곱
____3.2.1 예제: 전립선암
____3.2.2 가우스-마코프 정리
____3.2.3 단순 일변량 회귀로부터의 다중회귀
____3.2.4 다중 출력
__3.3 부분집합 선택
____3.3.1 최량 부분집합 선택
____3.3.2 전진 및 후진 스텝별 선택
____3.3.3 전진 - 스테이지별 회귀
____3.3.4 전립선암 데이터 예제(계속)
__3.4 수축법
____3.4.1 릿지회귀
____3.4.2 라쏘
____3.4.3 논의: 부분집합 선택, 릿지회귀 그리고 라쏘
____3.4.4 최소각회귀
__3.5 유도된 입력 방향을 사용하는 방법들
____3.5.1 주성분회귀
____3.5.2 부분최소제곱
__3.6 논의: 선택법과 수축법 비교
__3.7 다중 결과 수축 및 선택
__3.8 라쏘 및 관련된 경로 알고리즘에 관한 추가 내용
____3.8.1 증가적 전진 스테이지별 회귀
____3.8.2 조각별 - 선형 경로 알고리즘
____3.8.3 댄치그 선택자
____3.8.4 그룹화 라쏘
____3.8.5 라쏘의 추가적인 속성
____3.8.6 경로별 좌표 최적화
__3.9 연산적 고려 사항
__참고문헌
__연습 문제

4장. 분류를 위한 선형법
__4.1 소개
__4.2 지시행렬의 선형회귀
__4.3 선형판별분석
____4.3.1 정칙판별분석
____4.3.2 LDA를 위한 연산
____4.3.3 축소된 랭크 선형판별분석
__4.4 로지스틱회귀
____4.4.1 로지스틱회귀 모델 적합
____4.4.2 예제: 남아프리카인 심장병
____4.4.3 이차근사 및 추론
____4.4.4 L1 정칙화 로지스틱회귀
____4.4.5 로지스틱회귀 아니면 LDA?
__4.5 분리초평면
____4.5.1 로젠블랫의 퍼셉트론 학습 알고리즘
____4.5.2 최적 분리초평면
__참고문헌
__연습 문제

5장. 기저전개와 정칙화
__5.1 소개
__5.2 조각별 다항식과 스플라인
____5.2.1 자연 삼차 스플라인
____5.2.2 예제: 남아프리카 심장 질환(계속)
____5.2.3 예제: 음소 인식
__5.3 필터링과 특성 추출
__5.4 평활 스플라인
____5.4.1 자유도와 평활자 행렬
__5.5 평활화 매개변수의 자동적 선택
____5.5.1 자유도 고정하기
____5.5.2 편향 - 분산 상반관계
__5.6 비모수적 로지스틱회귀
__5.7 다차원 스플라인
__5.8 정칙화 및 재생 커널 힐베르트 공간
____5.8.1 커널에 의해 생성된 함수의 공간
____5.8.2 RKHS 예시
__5.9 웨이블릿 평활화
____5.9.1 웨이블릿 기저와 웨이블릿 변환
____5.9.2 적응적 웨이블릿 필터링
__참고문헌
__연습 문제
__부록: 스플라인 연산
____B - 스플라인
____평활 스플라인의 연산

6장. 커널 평활법
__6.1 1차원 커널 평활자
____6.1.1 국소 선형회귀
____6.1.2 국소 다항회귀
__6.2 커널의 너비 선택하기
__6.3 Rp에서의 국소 회귀
__6.4 Rp에서의 구조적 국소 회귀 모델
____6.4.1 구조화 커널
____6.4.2 구조화 회귀함수
__6.5 국소 가능도 및 다른 모델
__6.6 커널 밀도 추정 및 분류
____6.6.1 커널 밀도 추정
____6.6.2 커널 밀도 분류
____6.6.3 단순 베이즈 분류기
__6.7 방사기저함수와 커널
__6.8 밀도 추정과 분류를 위한 혼합 모델
__6.9 연산 고려 사항
__참고문헌
__연습 문제

7장. 모델 평가 및 선택
__7.1 소개
__7.2 편향, 분산, 모델 복잡도
__7.3 편향-분산 분해
____7.3.1 예제: 편향 - 분산 상반관계
__7.4 훈련 오류율에 관한 낙관도
__7.5 표본-내 예측오차의 추정값
__7.6 매개변수의 유효 개수
__7.7 베이즈 접근법과 BIC
__7.8 최소 설명 길이
__7.9 밥닉-체브넨키스 차원
____7.9.1 예제(계속)
__7.10 교차 검증
____7.10.1 K-겹 교차 검증
____7.10.2 교차 검증을 하는 잘못된 그리고 옳은 방법
____7.10.3 교차 검증은 정말로 작동하는가?
__7.11 부트스트랩법
____7.11.1 예제(계속)
__7.12 조건부 혹은 기대 테스트 오차
__참고문헌
__연습 문제

8장. 모델 추론과 평균화
__8.1 소개
__8.2 부트스트랩과 최대가능도 방법
____8.2.1 평활화 예제
____8.2.2 최대가능도 추정
____8.2.3 부트스트랩 대 최대가능도
__8.3 베이즈 방법
__8.4 부트스트랩과 베이즈 추정 사이의 관계
__8.5 EM 알고리즘
____8.5.1 2 - 성분 혼합모델
____8.5.2 일반적인 EM 알고리즘
____8.5.3 최대화 - 최대화 과정으로써의 EM
__8.6 사후분포로부터 표본 추출을 위한 MCMC
__8.7 배깅
____8.7.1 예제: 시뮬레이션 데이터로 된 트리
__8.8 모델 평균화와 스태킹
__8.9 확률적 검색: 범핑
__참고문헌
__연습 문제

9장. 가법 모델, 트리 및 관련 방법들
__9.1 일반화 가법 모델
____9.1.1 가법 모델 적합시키기
____9.1.2 예제: 가법 로지스틱회귀
____9.1.3 요약
__9.2 트리 기반 방법
____9.2.1 배경
____9.2.2 회귀 트리
____9.2.3 분류 트리
____9.2.4 다른 문제들
____9.2.5 스팸 예제(계속)
__9.3 PRIM: 범프 헌팅
____9.3.1 스팸 예제(계속)
__9.4 MARS: 다변량 적응적 회귀 스플라인
____9.4.1 스팸 데이터(계속)
____9.4.2 예제(시뮬레이션된 데이터)
____9.4.3 다른 문제들
__9.5 전문가 계층 혼합
__9.6 결측 데이터
__9.7 연산 고려 사항
__참고문헌
__연습 문제

10장. 부스팅과 가법 트리
__10.1 부스팅법
____10.1.1 개요
__10.2 부스팅 적합과 가법 모델
__10.3 전진 스테이지별 가법 모델링
__10.4 지수손실과 에이다 부스트
__10.5 왜 지수손실인가?
__10.6 손실함수와 로버스트성
__10.7 데이터 마이닝을 위한 “기성품” 같은 과정
__10.8 예제: 스팸 데이터
__10.9 부스팅 트리
__10.10 경사 부스팅을 통한 수치적 최적화
____10.10.1 최급하강
____10.10.2 경사 부스팅
____10.10.3 경사 부스팅의 구현
__10.11 부스팅을 위한 적절한 크기의 트리
__10.12 정칙화
____10.12.1 수축
____10.12.2 부표집
__10.13 해석
____10.13.1 예측변수의 상대 중요도
____10.13.2 부분 의존도 도표
__10.14 삽화
____10.14.1 캘리포니아 주택
____10.14.2 뉴질랜드 물고기
____10.14.3 인구통계 데이터
__참고문헌
__연습 문제

11장. 신경망
__11.1 소개
__11.2 사영추적 회귀
__11.3 신경망
__11.4 신경망 적합시키기
__11.5 신경망을 훈련시킬 때의 문제
____11.5.1 시작값
____11.5.2 과적합
____11.5.3 입력변수의 척도화
____11.5.4. 은닉 유닛과 층의 개수
____11.5.5 복수의 최솟값들
__11.6 예제: 시뮬레이션 데이터
__11.7 예제: 우편번호 데이터
__11.8 논의
__11.9 베이즈 신경망과 NIPS 2003 챌린지
____11.9.1 베이즈, 부스팅, 배깅
____11.9.2 성능 비교
__11.10 연산 고려 사항
__참고문헌
__연습 문제

12장. 서포트벡터머신과 유연한 판별식
__12.1 도입
__12.2 서포트벡터분류기
____12.2.1 서포트벡터분류기 연산하기
____12.2.2 혼합 예제(계속)
__12.3 서포트벡터머신과 커널
____12.3.1 분류를 위한 SVM 연산
____12.3.2 벌점화 방법으로서의 SVM
____12.3.3 함수 추정과 재생커널
____12.3.4 SVM과 차원성의 저주
____12.3.5 SVM 분류기를 위한 경로 알고리즘
____12.3.6 회귀를 위한 서포트벡터머신
____12.3.7 회귀와 커널
____12.3.8 논의
__12.4 선형판별분석 일반화
__12.5 유연한 판별분석
____12.5.1 FDA 추정값 계산하기
__12.6 벌점화 판별분석
__12.7 혼합판별분석
____12.7.1 예제: 파형 데이터
__12.8 연산 고려 사항
__참고문헌
__연습 문제

13장. 프로토타입 방법과 최근접이웃법
__13.1 개요
__13.2 프로토타입법
____13.2.1 K- 평균 군집화
____13.2.2 학습 벡터 양자화
____13.2.3 가우스 혼합
__13.3 K-최근접이웃 분류기
____13.3.1 예제: 비교 연구
____13.3.2 예제: K - 최근접이웃과 이미지 장면 분류
____13.3.3 불변 계량과 탄젠트 거리
__13.4 적응적 최근접이웃법
____13.4.1 예제
____13.4.2 최근접이웃을 위한 전역 차원 축소
__13.5 연산 고려 사항
__참고문헌
__연습 문제

14장. 비지도 학습
__14.1 개요
__14.2 연관성 규칙
____14.2.1 시장 바스켓 분석
____14.2.2 아프리오리 알고리즘
____14.2.3 예제: 시장 바스켓 분석
____14.2.4 지도 학습 같은 비지도
____14.2.5 일반화 연관성 규칙
____14.2.6 지도 학습법의 선택
____14.2.7 예제: 시장 바스켓 분석(계속)
__14.3 군집분석
____14.3.1 근접도 행렬
____14.3.2 속성에 근거한 비유사도
____14.3.3 개체 비유사도
____14.3.4 군집화 알고리즘
____14.3.5 조합적 알고리즘
____14.3.6 K - 평균
____14.3.7 K - 평균 연군집화로서의 가우스 혼합
____14.3.8 예제: 인간 종양 미세 배열 데이터
____14.3.9 벡터 양자화
____14.3.10 K- 중위점
____14.3.11 실제적인 문제
____14.3.12 계층적 군집화
__14.4 자기 조직화 맵
__14.5 주성분, 주곡선과 주표면
____14.5.1 주성분
____14.5.2 주곡선과 주표면
____14.5.3 스펙트럼 군집화
____14.5.4 커널 주성분
____14.5.5 희박 주성분
__14.6 비음수행렬 분해
____14.6.1 원형분석
__14.7 독립성분분석과 탐색적 사영추적
____14.7.1 잠재변수와 인자분석
____14.7.2 독립성분분석
____14.7.3 탐색적 사영추적
____14.7.4 ICA의 직접적 접근법
__14.8 다차원 척도화
__14.9 비선형 차원 축소와 국소 다차원 척도화
__14.10 구글 페이지랭크 알고리즘
__참고문헌
__연습 문제

15장. 랜덤포레스트
__15.1 개요
__15.2 랜덤포레스트의 정의
__15.3 랜덤포레스트의 세부 사항
____15.3.1 아웃오브백 표본
____15.3.2 변수 중요도
____15.3.3 근접도 도표
____15.3.4 랜덤포레스트와 과적합
__15.4 랜덤포레스트의 분석
____15.4.1 분산 및 역상관 효과
____15.4.2 편향
____15.4.3 적응적 최근접이웃
__참고문헌
__연습 문제

16장. 앙상블 학습
__16.1 개요
__16.2 부스팅과 정칙화 경로
____16.2.1 벌점화 회귀
____16.2.2 “희박성 베팅” 원칙
____16.2.3 정칙화 경로, 과적합 그리고 마진
__16.3 학습 앙상블
____16.3.1 좋은 앙상블 학습하기
____16.3.2 규칙 앙상블
__참고문헌
__연습 문제

17장. 무향 그래프 모델
__17.1 개요
__17.2 마코프 그래프 및 이들의 속성
__17.3 연속형 변수를 위한 무향 그래프 모델
____17.3.1 그래프 구조가 알려져 있을 때 매개변수의 추정
____17.3.2 그래프 구조의 추정
__17.4 이산변수를 위한 무향 그래프 모델
____17.4.1 그래프 구조가 알려져 있을 때 매개변수의 추정
____17.4.2 은닉 노드
____17.4.3 그래프 구조의 추정
____17.4.4 제약된 볼츠만 머신
__참고문헌
__연습 문제

18장. 고차원 문제: p≪N
__18.1 p가 N보다 훨씬 클 때
__18.2 대각 선형판별분석과 최근접 수축 중심점
__18.3 이차 정칙화 선형 분류기
____18.3.1 정칙판별분석
____18.3.2 이차 정칙화로 된 로지스틱회귀
____18.3.3 서포트벡터분류기
____18.3.4 특성 선택
____18.3.5 p ≫ N일 때 연산적인 지름길
__18.4 L1 정칙화 선형 분류기
____18.4.1 단백질 질량 분광분석의 라쏘 적용
____18.4.2 함수형 데이터를 위한 퓨즈화 라쏘
__18.5 특성을 쓸 수 없을 때의 분류
____18.5.1 예제: 문자열 커널과 단백질 분류
____18.5.2 내적 커널과 쌍별 거리를 사용하는 분류 및 다른
____18.5.3 예제: 초록 분류
__18.6 고차원 회귀: 지도 주성분
____18.6.1 잠재변수 모델링과의 연결성
____18.6.2 부분최소제곱과의 관계
____18.6.3 특성 선택을 위한 전제조건화
__18.7 특성 평가와 다중검정 문제
____18.7.1 오발견율
____18.7.2 비대칭 절단점과 SAM 과정
____18.7.3 FDR의 베이즈적 해석
__18.8 참고문헌
__연습 문제

관련이미지

저자소개

로버트 팁시라니, 제롬 프리드먼 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

이판호 [역] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 77권 / 현재구매 가능도서 72권)

선택한 상품 북카트담기
펼쳐보기

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용