간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 5/1~5/31 기간 중 1회)
삼성카드 6% (29,610원)
(삼성카드 6% 청구할인)
인터파크 롯데카드 5% (29,930원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (22,050원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (25,200원)
(최대할인 4만원 / 2만원 이상 결제)
Close

파이썬을 활용한 비지도 학습 : 비구조 데이터로부터 숨겨진 패턴과 관계 찾기

원제 : Applied Unsupervised Learning with Python
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 22
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

35,000원

  • 31,500 (10%할인)

    1,750P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(59)

  • 상품권

AD

책소개

다양한 예제를 통해 파이썬을 사용한 비지도 학습을 자세하고 친절하게 설명한다. 머신 러닝을 잘 모르는 독자라도 이 책을 따라가다 보면 손쉽게 비지도 학습의 개념을 이해하고 자연스럽게 자신만의 데이터로 흥미로운 분석을 시도하게 될 것이다.

출판사 서평

★ 이 책에서 다루는 내용 ★
■ 클러스터링의 기본과 중요성 이해
■ 기본 제공 패키지를 사용해 처음부터 k-평균, 계층적 및 DBSCAN 클러스터링 알고리즘 구축
■ 차원 축소 및 적용
■ Scikit-learn으로 Iris 데이터셋에서 PCA 구현 및 분석
■ Keras로 CIFAR-10 데이터셋용 오토인코더 모델 구축
■ 머신 러닝 익스텐션(Mlxtend)을 사용한 Apriori 알고리즘으로 거래 데이터 연구

★ 이 책의 대상 독자 ★
비지도 학습에 관심 있는 개발자, 데이터 과학자와 머신 러닝에 관심 있는 독자를 위한 책이다. 지수나 제곱근, 평균, 중위값 등을 포함한 수학 개념의 기초 지식과 함께 파이썬 프로그래밍 관련 지식이 필요하다.

목차

1장. 클러스터링 소개
__소개
__비지도 학습과 지도 학습의 차이
__클러스터링
____클러스터 식별
____2차원 데이터
____연습 1: 데이터에서 클러스터 인식
__k-평균 클러스터링 소개
____수학이 필요 없는 k-평균 연습
____k-평균 클러스터링 심화 연습
____대안 거리 메트릭-맨해튼 거리
____더 깊은 차원
____연습 2: 파이썬으로 유클리드 거리 계산
____연습 3: 거리 개념으로 클러스터 구성
____연습 4: 직접 k-평균 구현
____연습 5: 최적화를 통한 k-평균 구현
____클러스터링 성능: 실루엣 점수
____연습 6: 실루엣 점수 계산
____활동 1: k-평균 클러스터링 구현
__요약

2장. 계층적 클러스터링
__소개
____클러스터링 다시 살펴보기
____k-평균 다시 살펴보기
__계층 구조
__계층적 클러스터링 소개
____계층적 클러스터링 수행 단계
____계층적 클러스터링 연습 예제
____연습 7: 계층 구성
__연결
____활동 2: 연결 기준 적용
__응집 vs 분산 클러스터링
____연습 8: scikit-learn을 사용한 응집 클러스터링 구현
____활동 3: 계층적 클러스터링과 k-평균 비교
__k-평균 vs 계층적 클러스터링
__요약

3장. 이웃 접근과 DBSCAN
__소개
____이웃으로서의 클러스터
__DBSCAN 소개
____DBSCAN 심화 학습
____DBSCAN 알고리즘 연습
____연습 9: 이웃 반경 크기의 영향 평가
____DBSCAN 속성 - 이웃 반경
____활동 4: DBSCAN 처음부터 구현
____DBSCAN 속성-최소 지점 수
____연습 10: 최소 지점 수의 영향 평가
____활동 5: DBSCAN과 k-평균 그리고 계층적 클러스터링 비교
__DBSCAN 대 k-평균과 계층적 클러스터링
__요약

4장. 차원 축소와 PCA
__소개
____차원 축소란 무엇인가?
____차원 축소 적용
____차원의 저주
__차원 축소 기법 개요
____차원 축소와 비지도 학습
__PCA
____평균
____표준편차
____공분산
____공분산 행렬
____연습 11: 통계의 기본 개념 이해
____고윳값 및 고유 벡터
____연습 12: 고윳값 및 고유 벡터 계산
____PCA 처리 절차
____연습 13: PCA 수동 실행
____연습 14: Scikit-Learn PCA
____활동 6: 수동 PCA와 scikit-learn 비교
____압축된 데이터셋 복원
____연습 15: 수동 PCA로 분산 감소 시각화
____연습 16: 분산 감소 시각화
____연습 17: Matplotlib에서 3D 도표 그리기
____활동 7: 확장된 아이리스 데이터셋을 사용한 PCA
__요약

5장. 오토인코더
__소개
__인공 신경망 기초
____뉴런
____Sigmoid 함수
____정류 선형 단위
____연습 18: 인공 신경망의 뉴런 모델링
____활동 8: ReLU 활성화 함수를 사용한 뉴런 모델링
____신경망: 구조 정의
____연습 19: Keras 모델 정의
____신경망: 학습
____연습 20: Keras 신경망 훈련
____활동 9: MNIST 신경망
__오토인코더
____연습 21: 간단한 오토인코더
____활동 10: 간단한 MNIST 오토인코더
____연습 22: 다중 계층 오토인코더
____컨볼루셔널 신경망
____연습 23: 컨볼루셔널 오토인코더
____활동 11: MNIST 컨볼루셔널 오토인코더
__요약

6장. t-분포 확률적 이웃 임베딩
__소개
__확률적 이웃 임베딩
__t-분포 확률적 이웃 임베딩
____연습 24: t-SNE MNIST
____활동 12: 와인 t-SNE
__t-SNE 도표 해석
____퍼플렉서티
____연습 25: t-SNE MNIST와 퍼플렉서티
____활동 13: t-SNE 와인과 퍼플렉서티
____이터레이션
____연습 26: t-SNE MNIST와 반복
____활동 14: t-SNE 와인과 이터레이션
____시각화에 대한 최종 의견
__요약

7장. 토픽 모델링
__소개
____토픽 모델
____연습 27: 환경 설정
____토픽 모델 개요
____비즈니스 활용
____연습 28: 데이터 로딩
__텍스트 데이터 정리
____데이터 정리 기법
____연습 29: 단계별 데이터 정리
____연습 30: 데이터 정리 마무리
____활동 15: 트위터 데이터 로딩 및 정리
__잠재 디리클레 할당
____변분 추론
____백오브워즈
____연습 31: 카운트 벡터라이저를 사용한 백오브워즈 모델 생성
____퍼플렉서티
____연습 32: 주제의 수 선택
____연습 33: 잠재 디리클레 할당 실행
____연습 34: LDA 시각화
____연습 35: 4개 주제 시도
____활동 16: 잠재 디리클레 할당과 건강 트윗
____백오브워즈 추가 사항
____연습 36: TF-IDF를 사용한 백오브워즈 생성
__음수 미포함 행렬 분해
____프로베니우스 놈
____증배 갱신
____연습 37: 음수 미포함 행렬 분해
____연습 38: NMF 시각화
____활동 17: 음수 미포함 행렬 분해
__요약

8장. 장바구니 분석
__소개
__장바구니 분석
____활용 사례
____중요한 확률 지표
____연습 39: 샘플 거래 데이터 생성
____지지도
____신뢰도
____향상도와 레버리지
____확신
____연습 40: 지표 계산
__거래 데이터의 특징
____연습 41: 데이터 불러오기
____데이터 정리 및 형식화
____연습 42: 데이터 정리 및 포매팅
____데이터 인코딩
____연습 43: 데이터 인코딩
____활동 18: 전체 온라인 소매 데이터의 로딩과 준비
__Apriori 알고리즘
____계산 수정
____연습 44: Apriori 알고리즘 실행
____활동 19: 전체 온라인 소매 데이터셋에 Apriori 적용
__연관 규칙
____연습 45: 연관 규칙 도출
____활동 20: 전체 온라인 소매 데이터셋의 연관 규칙 찾기
__요약

9장. 핫스팟 분석
__소개
____공간 통계
____확률 밀도 함수
____산업에 핫스팟 분석 사용
__커널 밀도 추정
____대역폭 값
____연습 46: 대역폭 값의 효과
____최적의 대역폭 선택
____연습 47: 그리드 검색을 사용한 최적 대역폭 선택
____커널 함수
____연습 48: 커널 함수의 효과
____커널 밀도 추정 도출
____연습 49: 커널 밀도 추정의 도출 시뮬레이션
____활동 21: 1차원에서의 밀도 추정
__핫스팟 분석
____연습 50: Seaborn으로 데이터 로드 및 모델링
____연습 51: 베이스맵 작업
____활동 22: 런던에서의 범죄 분석
__요약

부록

저자소개

애런 존스, 크리스토퍼 크루거 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

조경빈 [역] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 63권 / 현재구매 가능도서 60권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용