간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (25,650원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (18,900원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (21,600원)
(최대할인 4만원 / 2만원 이상 결제)
Close

파이썬으로 실무에 바로 적용하는 머신 러닝

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 65
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

30,000원

  • 27,000 (10%할인)

    1,500P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 7/11(월) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(71)

  • 상품권

AD

책소개

머신 러닝을 처음 접하는 독자들이 구현 언어, 구현 패키지, 구현 편집기를 포함해 종합적으로 이해하고 바라볼 수 있도록 안내하는 책이다. 머신 러닝의 기본 개념부터 가장 범용적이고 활용도가 높은 알고리즘을 예제를 통해 설명한다. 더불어 단순한 설명으로만 멈추지 않고, 한 걸음 더 나아가 수식적인 해석도 할 수 있도록 안내한다.

출판사 서평

★ 이 책에서 다루는 내용 ★

■ 머신 러닝 구현 언어인 파이썬의 기본 구조
■ 파이썬 편집기인 파이참
■ 머신 러닝 기본 패키지인 넘파이, 판다스, 맷플롯립
■ 머신 러닝 패키지인 사이킷런, 케라스
■ 범용 또는 가장 활용이 많은 머신 러닝 알고리즘
■ 알고리즘의 이해를 높이기 위한 적절한 수식 도입 및 구현
■ 알고리즘마다 적절한 예와 예제

★ 이 책의 대상 독자 ★

■ 머신 러닝에 입문하는 데 필요한 내용을 종합적으로 이해하고자 하는 독자
■ 머신 러닝에 입문했으나 좀 더 상세한 알고리즘을 알고 한 걸음 더 나아가고자 하는 독자
■ 머신 러닝을 구현 언어의 코드와 함께 이해하고자 하는 개발자
■ 머신 러닝 알고리즘을 현장에서 바로 적용하고자 하는 데이터 과학자

★ 이 책의 구성 ★

이 책은 크게 두 부분으로 구성돼 있다. 머신 러닝 언어인 파이썬 언어 및 주요 패키지에 대한 설명, 그리고 각각의 알고리즘에 관한 내용이다.
파이썬 언어와 머신 러닝 기본 패키지인 사이킷런(scikit-learn), 케라스(Keras)에 대한 이해가 있다면 바로 10장부터 시작해도 무방하다.
파이썬 언어와 패키지에서 꼭 필요하다고 생각하는 언어의 기본 구조, 넘파이(NumPy), 판다스(Pandas), 맷플롯립(matplotlib), 사이킷런, 케라스를 수록했다. 또한 각 패키지의 설명은 꼭 필요한 클래스와 메소드 위주로 설명했다. 물론 이후의 머신 러닝 알고리즘의 예제에서는 해당 장에서 다루지 않는 다른 클래스와 메소드를 사용하기도 하지만 전반적인 이해를 돕도록 하는 것에 초점을 뒀다.
10장. ‘표기법’, 11장. ‘모델 평가와 선택‘과 12장. ‘선형 회귀에 의한 머신러닝 구조에 대한 이해’는 머신 러닝 이해를 위한 개요라 할 수 있어, 꼭 숙지했으면 하며 이후 다른 장은 개별적으로 필요할 때 살펴봐도 무방하다.
머신 러닝 알고리즘 중에서 가장 많이 활용되는 로지스틱회귀, 결정 나무, 나무 기반의 앙상블 모델인 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 머신, 다층 신경망, 합성곱 신경망, 순환 신경망을 수록했으며 비지도 학습 모델인 특이값 분해, 주성분 분석, 연관 분석 및 군집 분석을 수록했다.
각 머신 러닝 알고리즘에서는 핵심이 되는 알고리즘 구조를 수식과 함께 다루며, 이를 구현한 예제도 수록했다. 알고리즘 내용에서 너무 많은 사전 지식이 필요한 경우에는 일정 부분을 하나의 사실로 인정하고 그 이후의 내용을 다룬다. 예를 들어 "특이값 분해"에서 임의의 행렬은 무조건 UDVT로 분해되는데, 분해되는 과정부터 이를 설명하기에는 수학적인 내용의 깊이도 깊고 사전 지식이 많다. 이런 이유에서 "분해가 된다는 것"을 하나의 사실로 인정하고 이후의 내용을 진행하겠다.
신경망 기법에서는 가급적 핵심이 되는 역전파(back propagation) 또는 후진 패스 과정을 간단하나마 예제와 수식으로 설명했다.
가급적 이 한 권으로 머신 러닝의 전반적인 구조와 구현을 설명하고자 했다. 이 의도가 제대로 잘 전달됐으면 한다.

목차

지은이 소개
지은이의 말
들어가며

1장. 머신 러닝 개요
__1.1 머신 러닝의 정의
__1.2 머신 러닝의 응용 분야
__1.2.1 가상 개인 비서
__1.2.2 구글 맵
__1.2.3 상품 추천
__1.3 머신 러닝의 기술적 단계
__1.4 머신 러닝 알고리즘
__1.5 머신 러닝 알고리즘의 범위
__1.6 머신 러닝 알고리즘의 구현

2장. 파이썬 설치
__2.1 개요
__2.2 아나콘다를 이용한 파이썬 설치
__2.2.1 아나콘다 내려받기
__2.2.2 아나콘다 설치
__2.3 파이참 내려받기 및 설치
__2.4 텐서플로 설치
__2.5 케라스 설치
__2.6 추가 패키지 설치 및 환경 변수 설정

3장. 파이참 개요
__3.1 개요
__3.2 프로젝트 생성
__3.3 전체 화면 구성
__3.4 개발 환경 맞춤
__3.5 코드 작성 도우미 기능
__3.6 파이썬 파일 생성
__3.7 탐색
__3.8 디버깅
__3.9 버전 관리
__3.10 재구성
__3.11 단축키 찾기

4장. 파이썬 언어에 대한 이해
__4.1 개요
__4.2 데이터형
__4.3 식별자의 표기
__4.4 값의 할당
__4.5 형변환
__4.6 열 컨테이너 인덱싱
__4.7 논리 연산자
__4.8 문 구성
__4.9 모듈 가져오기
__4.10 조건문
__4.11 수학 함수
__4.12 조건 반복문
__4.13 컨테이너형 일반 연산
__4.14 리스트 연산
__4.15 딕셔너리 연산
__4.16 집합 연산
__4.17 함수 정의
__4.18 문자열 연산
__4.19 포맷 구성하기

5장. 패키지 이해
__5.1 개요
__5.2 배열 생성
__5.3 배열 연산
__5.4 배열 요소 값 정하기
__5.5 다차원 배열
__5.6 배열 조각내기
__5.7 팬시 인덱싱
__5.8 배열 생성자
__5.9 배열의 추가(행 또는 열)
__5.10 배열의 축과 계산
__5.11 배열의 방송

6장. 판다스 패키지 이해
__6.1 개요
__6.2 데이터 구조
__6.3 부분 데이터 구성
__6.4 데이터 요약
__6.5 신규 열 생성
__6.6 결측값 처리
__6.7 데이터 결합
__6.8 그룹화
__6.9 모양 변경

7장. Matplotlib 패키지 이해
__7.1 개요
__7.2 데이터 준비
__7.3 그래프 준비
__7.4 그래프 생성
__7.5 그래프 수정
__7.6 그래프 저장
__7.7 그래프 보여주기 및 초기화

8장. scikit-learn 패키지 이해
__8.1 개요
__8.2 데이터 불러오기
__8.3 데이터 분할
__8.4 모델 적합 및 평가
__8.5 모수 추정값
__8.6 비지도 학습의 예

9장. 케라스 패키지 이해
__9.1 개요
__9.2 다층 신경망 구현
__9.3 심층 신경망 구현

10장. 표기법

11장. 모델 평가와 선택
__11.1 개요
__11.2 훈련 데이터
__11.3 모델 적합도의 측정
__11.4 편향-분산 균형

12장. 선형 회귀에 의한 머신러닝 구조에 대한 이해
__12.1 개요
__12.2 가설함수와 비용함수
__12.3 알고리즘
__12.4 비용함수의 원천

13장. 분류 문제와 로지스틱회귀분석
__13.1 개요
__13.2 선형회귀 대 로지스틱회귀
__13.3 비용함수
__13.4 로그-오즈
__13.5 연결 함수
__13.6 분류 문제에서의 모델 평가
__13.7 소프트맥스 회귀
__13.8 예제

14장. 모델 선택 및 정규화
__14.1 개요
__14.2 교차 검증
__14.3 변수 선택
__14.4 정규화 과정과 변수 선택
__14.5 예제

15장. 분류와 회귀 나무
__15.1 개요
__15.2 회귀 나무
__15.3 최적 회귀 나무의 선택
__15.4 분류 나무
__15.5 나무의 몇 가지 이슈
__15.6 예제

16장. 랜덤 포레스트
__16.1 개요
__16.2 배깅
__16.3 OOB 오차
__16.4 변수 중요도
__16.5 랜덤 포레스트 알고리즘
__16.6 랜덤 포레스트에서의 변수 중요도
__16.7 예제

17장. 그래디언트 부스팅
__17.1 개요
__17.2 부스팅
__17.3 ADABOOST.M1
__17.4 부스팅과 가법 모델
__17.5 전진 순차방식 가법 모델링
__17.6 지수 손실함수와 적응 부스팅
__17.7 부스팅의 확장
__17.8 부스팅의 초 모수 조정
__17.9 부스팅의 정규화
__17.10 예제

18장. 서포트 벡터 머신
__18.1 개요
__18.2 로지스틱회귀와 초평면
__18.3 표기법
__18.4 마진과 최적 마진 분류기(optimal margin classifier)
__18.5 라그랑지 쌍대성
__18.6 라그랑지 쌍대성을 이용한 최대 마진 분류기
__18.7 커널
__18.8 정규화와 비분리 경우
__18.9 여유 변수(slack variable)와 초 모수 C
__18.10 비용함수
__18.11 서포트 벡터 머신의 모수 추정
__18.12 예제: 커널 함수로 분리 가능한 경우(하드 마진)
__18.13 예제: 커널 함수로 분리가 불가능한 경우(소프트 마진)
__18.14 예제: 선형 이외의 커널 함수 적용
__18.15 초 모수의 결정
__18.16 예제: [BANK] 데이터 적용

19장. 다층 신경망
__19.1 개요
__19.2 표기법
__19.3 전진 패스
__19.4 활성함수
__19.5 전진 패스의 예시
__19.6 후진 패스
__19.7 후진 패스의 예시
__19.8 초깃값 주기
__19.9 기울기 소멸 문제
__19.10 입력변수의 표준화
__19.11 과적합 문제
__19.12 예제: [BANK] 데이터 적용

20장. 합성곱 신경망
__20.1 개요
__20.2 합성곱층
__20.3 결합층
__20.4 완전연결층
__20.5 합성곱 신경망 아키텍처의 예시
__20.6 모수의 추정
__20.7 예제: [DIGITS] 데이터 적용(다층 신경망)
__20.8 예제: [DIGITS] 데이터 적용(합성곱 신경망)

21장. 순환 신경망
__21.1 개요
__21.2 기본 순환 신경망
__21.3 모수의 추정
__21.4 후진 패스 예제
__21.5 장단기 기억 신경망
__21.6 LSTM 예시

22장. 특이값 분해
__22.1 개요
__22.2 정의
__22.3 분해 행렬의 계산
__22.4 특이값 분해 계산
__22.5 특이값 분해 예제: 추천 시스템

23장. 주성분 분석
__23.1 개요
__23.2 정의
__23.3 주성분의 계산
__23.4 주성분을 이용한 차원 축소
__23.5 주성분의 기학학적 의미
__23.6 주성분의 계산 예제
__23.7 주성분을 이용한 분석(예: MNIST 손글씨 숫자 데이터)

24장. 연관 분석
__24.1 개요
__24.2 표기법
__24.3 지지도, 신뢰도 그리고 향상도
__24.4 APRIORI 알고리즘
__24.5 APRIORI 알고리즘 예시
__24.6 APRIORI 알고리즘의 문제
__24.7 예제

25장. 군집 분석
__25.1 개요
__25.2 표기법
__25.3 k-평균 군집화
__25.4 k-평균 군집화 알고리즘
__25.5 k-평균 군집화 알고리즘 예시
__25.6 격차 통계량을 이용한 k의 선택
__25.7 격차 통계량 계산 예제
__25.8 실루엣 값을 이용한 군집의 평가
__25.9 실루엣 값 계산 예제

참고문헌

관련이미지

저자소개

강봉주 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

언론사 추천 및 수상내역

이 상품의 시리즈

(총 77권 / 현재구매 가능도서 72권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용