간편결제, 신용카드 청구할인
PAYCO(페이코) 최대 5,000원 할인
(페이코 신규 회원 및 90일 휴면 회원 한정)
네이버페이 1%
(네이버페이 결제 시 적립)
북피니언 롯데카드 30% (20,790원)
(최대할인 3만원 / 3만원 이상 결제)
EBS 롯데카드 20% (23,760원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 NEW 우리V카드 10% (26,730원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 현대카드 7% (27,630원)
(최대할인 3만원 / 3만원 이상 결제)
Close

머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로 : Numpy, scikit-learn 0.2x, TensorFlow 2.x로 배우는 머신 러닝, 딥러닝 핵심 알고리즘

원제 : Python Machine Learning 2/E
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 2,665
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

33,000원

  • 29,700 (10%할인)

    1,650P (5%적립)

  • 구매

    26,400 (20%할인)

    1,320P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 출고완료 후 14일 이내 마이페이지에서 적립받기한 경우만 적립됩니다.
  • 추가혜택
    배송정보
    주문수량
    감소 증가
    • 북카트 담기
    • 바로구매
    • 매장픽업
    • 이벤트/기획전(1)

    • 연관도서

    • 사은품(8)

    책소개

    아마존 머신 러닝 분야 베스트셀러!
    기본기에 충실한 머신 러닝 입문서

    코드 실행만으로는 머신 러닝을 충분히 이해할 수 없다. 머신 러닝을 제대로 이해하고 싶다면 코드 외에도 머신 러닝 이론과 머신 러닝 알고리즘의 뒤편에 있는 수학 개념을 알아야 한다. 이 책은 이해를 돕는 개념 설명, 머신 러닝 핵심 알고리즘의 작동 방식과 사용 방법, 그 밑바탕이 되는 수학, 실용적인 예제까지 이론과 코드를 균형 있게 설명한다. 파이썬 언어와 파이썬 기반의 머신 러닝 핵심 라이브러리(SciPy, NumPy, scikit-learn, Matplotlib, Pandas)를 사용해 머신 러닝을, 텐서플로를 사용해 딥러닝을 실습하면서 머신 러닝과 딥러닝 핵심 알고리즘을 설명하고, 간단한 알고리즘은 처음부터 직접 구현해본다. 또한, 사이킷런의 기여자이자 mlxtend 라이브러리 제작자인 저자가 오랜 기간 머신 러닝 개발자로 일하면서 익힌 노하우도 책 곳곳에서 만날 수 있다. 머신 러닝에 관심 있는 분들에게 추천한다.

    출판사 서평

    간결한 개념, 수학, 실용적인 코드로
    머신 러닝 기초 이론을 완성한다!

    이론과 코드를 균형 있게 설명한다!

    코드 실행만으로는 머신 러닝을 충분히 이해할 수 없다. 머신 러닝을 제대로 이해하고 싶다면 코드 외에도 머신 러닝 이론과 머신 러닝 알고리즘의 뒤편에 있는 수학 개념을 알아야 한다. 이 책은 이해를 돕는 개념 설명, 머신 러닝 핵심 알고리즘의 작동 방식과 사용 방법, 그 밑바탕이 되는 수학, 실용적인 예제까지 이론과 코드를 균형 있게 설명한다. 사이킷런의 기여자이자 mlxtend 라이브러리 제작자인 저자가 오랜 기간 머신 러닝 개발자로 일하면서 익힌 노하우도 책 곳곳에서 만날 수 있다.

    핵심 알고리즘을 직접 구현한다!
    파이썬 언어와 파이썬 기반의 머신 러닝 핵심 라이브러리(SciPy, NumPy, scikit-learn, Matplotlib, Pandas)를 사용해 머신 러닝을, 텐서플로를 사용해 딥러닝을 실습해본다. 또한, 자연어 처리를 위한 NLTK 라이브러리, Flask 웹 프레임워크, 통계 데이터 시각화를 위한 Seaborn 라이브러리, 이미지를 디스크에서 읽기 위한 imageio도 함께 다룬다. 거기에 더해 머신 러닝과 딥러닝 핵심 알고리즘의 수학적 이론을 소개하고, 간단한 알고리즘은 처음부터 직접 구현해본다.

    실용적인 예제로 배운다!
    책의 모든 예제가 오랫동안 위스콘신 대학교에서 강의하고 현장에서 일한 저자의 경험을 바탕으로 한다. 단순히 개념만 익히는 것이 아닌 실용적이고 확장 가능한 예제들로 구성되어 있다. 이 예제들을 학습하면서 머신 러닝과 딥러닝의 개념, 핵심 알고리즘, 활용 팁 등을 확실하게 이해할 수 있으며, 나만의 딥러닝 모델을 만들 때 레시피로 활용할 수도 있다.

    추천사

    개념과 수식, 실습을 모두 다 잡으려는 욕심쟁이 같은 책이지만, 세 마리 토끼를 꽤나 훌륭하게 잡아주는 책이기도 합니다. 제목처럼 머신 러닝을 공부하고자 하는 분들에게 교과서와 같은 존재가 되어줄 것입니다. 또한, 번역서만의 장점이 매우 많아서 원서를 읽은 분들에게도 도움이 많이 될 것이라고 확신합니다. 머신 러닝에 관심이 있는 모든 분에게 이 책을 자신 있게 추천합니다.
    - 이진원 / 삼성전자 연구원, 텐서플로 코리아 운영진

    목차

    1장 컴퓨터는 데이터에서 배운다
    1.1 데이터를 지식으로 바꾸는 지능적인 시스템 구축
    1.2 머신 러닝의 세 가지 종류
    -1.2.1 지도 학습으로 미래 예측
    -1.2.2 강화 학습으로 반응형 문제 해결
    -1.2.3 비지도 학습으로 숨겨진 구조 발견
    1.3 기본 용어와 표기법 소개
    1.4 머신 러닝 시스템 구축 로드맵
    -1.4.1 전처리: 데이터 형태 갖추기
    -1.4.2 예측 모델 훈련과 선택
    -1.4.3 모델을 평가하고 본 적 없는 샘플로 예측
    1.5 머신 러닝을 위한 파이썬
    -1.5.1 파이썬과 PIP에서 패키지 설치
    -1.5.2 아나콘다 파이썬 배포판과 패키지 관리자 사용
    -1.5.3 과학 컴퓨팅, 데이터 과학, 머신 러닝을 위한 패키지
    1.6 요약

    2장 간단한 분류 알고리즘 훈련
    2.1 인공 뉴런: 초기 머신 러닝의 간단한 역사
    -2.1.1 인공 뉴런의 수학적 정의
    -2.1.2 퍼셉트론 학습 규칙
    2.2 파이썬으로 퍼셉트론 학습 알고리즘 구현
    -2.2.1 객체 지향 퍼셉트론 API
    -2.2.2 붓꽃 데이터셋에서 퍼셉트론 훈련
    2.3 적응형 선형 뉴런과 학습의 수렴
    -2.3.1 경사 하강법으로 비용 함수 최소화
    -2.3.2 파이썬으로 아달린 구현
    -2.3.3 특성 스케일을 조정하여 경사 하강법 결과 향상
    -2.3.4 대규모 머신 러닝과 확률적 경사 하강법
    2.4 요약

    3장 사이킷런을 타고 떠나는 머신 러닝 분류 모델 투어
    3.1 분류 알고리즘 선택
    3.2 사이킷런 첫걸음: 퍼셉트론 훈련
    3.3 로지스틱 회귀를 사용한 클래스 확률 모델링
    -3.3.1 로지스틱 회귀의 이해와 조건부 확률
    -3.3.2 로지스틱 비용 함수의 가중치 학습
    -3.3.3 아달린 구현을 로지스틱 회귀 알고리즘으로 변경
    -3.3.4 사이킷런을 사용하여 로지스틱 회귀 모델 훈련
    -3.3.5 규제를 사용하여 과대적합 피하기
    3.4 서포트 벡터 머신을 사용한 최대 마진 분류
    -3.4.1 최대 마진
    -3.4.2 슬랙 변수를 사용하여 비선형 분류 문제 다루기
    -3.4.3 사이킷런의 다른 구현
    3.5 커널 SVM을 사용하여 비선형 문제 풀기
    -3.5.1 선형적으로 구분되지 않는 데이터를 위한 커널 방법
    -3.5.2 커널 기법을 사용하여 고차원 공간에서 분할 초평면 찾기
    3.6 결정 트리 학습
    -3.6.1 정보 이득 최대화: 자원을 최대로 활용
    -3.6.2 결정 트리 만들기
    -3.6.3 랜덤 포레스트로 여러 개의 결정 트리 연결
    3.7 k-최근접 이웃: 게으른 학습 알고리즘
    3.8 요약

    4장 좋은 훈련 세트 만들기: 데이터 전처리
    4.1 누락된 데이터 다루기
    -4.1.1 테이블 형태 데이터에서 누락된 값 식별
    -4.1.2 누락된 값이 있는 샘플이나 특성 제외
    -4.1.3 누락된 값 대체
    -4.1.4 사이킷런 추정기 API 익히기
    4.2 범주형 데이터 다루기
    -4.2.1 순서가 있는 특성과 순서가 없는 특성
    -4.2.2 순서 특성 매핑
    -4.2.3 클래스 레이블 인코딩
    -4.2.4 순서가 없는 특성에 원-핫 인코딩 적용
    4.3 데이터셋을 훈련 세트와 테스트 세트로 나누기
    4.4 특성 스케일 맞추기
    4.5 유용한 특성 선택
    -4.5.1 모델 복잡도 제한을 위한 L1 규제와 L 2 규제
    -4.5.2 L 2 규제의 기하학적 해석
    -4.5.3 L1 규제를 사용한 희소성
    -4.5.4 순차 특성 선택 알고리즘
    4.6 랜덤 포레스트의 특성 중요도 사용
    4.7 요약

    5장 차원 축소를 사용한 데이터 압축
    5.1 주성분 분석을 통한 비지도 차원 축소
    -5.1.1 주성분 분석의 주요 단계
    -5.1.2 주성분 추출 단계
    -5.1.3 총분산과 설명된 분산
    -5.1.4 특성 변환
    -5.1.5 사이킷런의 주성분 분석
    5.2 선형 판별 분석을 통한 지도 방식의 데이터 압축
    -5.2.1 주성분 분석 vs 선형 판별 분석
    -5.2.2 선형 판별 분석의 내부 동작 방식
    -5.2.3 산포 행렬 계산
    -5.2.4 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택
    -5.2.5 새로운 특성 공간으로 샘플 투영
    -5.2.6 사이킷런의 LDA
    5.3 커널 PCA를 사용하여 비선형 매핑
    -5.3.1 커널 함수와 커널 트릭
    -5.3.2 파이썬으로 커널 PCA 구현
    -5.3.3 새로운 데이터 포인트 투영
    -5.3.4 사이킷런의 커널 PCA
    5.4 요약

    6장 모델 평가와 하이퍼파라미터 튜닝의 모범 사례
    6.1 파이프라인을 사용한 효율적인 워크플로
    -6.1.1 위스콘신 유방암 데이터셋
    -6.1.2 파이프라인으로 변환기와 추정기 연결
    6.2 k-겹 교차 검증을 사용한 모델 성능 평가
    -6.2.1 홀드아웃 방법
    -6.2.2 k-겹 교차 검증
    6.3 학습 곡선과 검증 곡선을 사용한 알고리즘 디버깅
    -6.3.1 학습 곡선으로 편향과 분산 문제 분석
    -6.3.2 검증 곡선으로 과대적합과 과소적합 조사
    6.4 그리드 서치를 사용한 머신 러닝 모델 세부 튜닝
    -6.4.1 그리드 서치를 사용한 하이퍼파라미터 튜닝
    -6.4.2 중첩 교차 검증을 사용한 알고리즘 선택
    6.5 여러 가지 성능 평가 지표
    -6.5.1 오차 행렬
    -6.5.2 분류 모델의 정밀도와 재현율 최적화
    -6.5.3 ROC 곡선 그리기
    -6.5.4 다중 분류의 성능 지표
    6.6 불균형한 클래스 다루기
    6.7 요약

    7장 다양한 모델을 결합한 앙상블 학습
    7.1 앙상블 학습
    7.2 다수결 투표를 사용한 분류 앙상블
    -7.2.1 간단한 다수결 투표 분류기 구현
    -7.2.2 다수결 투표 방식을 사용하여 예측 만들기
    -7.2.3 앙상블 분류기의 평가와 튜닝
    7.3 배깅: 부트스트랩 샘플링을 통한 분류 앙상블
    -7.3.1 배깅 알고리즘의 작동 방식
    -7.3.2 배깅으로 Wine 데이터셋의 샘플 분류
    7.4 약한 학습기를 이용한 에이다부스트
    -7.4.1 부스팅 작동 원리
    -7.4.2 사이킷런에서 에이다부스트 사용
    7.5 요약

    8장 감성 분석에 머신 러닝 적용
    8.1 텍스트 처리용 IMDb 영화 리뷰 데이터 준비
    -8.1.1 영화 리뷰 데이터셋 구하기
    -8.1.2 영화 리뷰 데이터셋을 더 간편한 형태로 전처리
    8.2 BoW 모델 소개
    -8.2.1 단어를 특성 벡터로 변환
    -8.2.2 tf-idf를 사용하여 단어 적합성 평가
    -8.2.3 텍스트 데이터 정제
    -8.2.4 문서를 토큰으로 나누기
    8.3 문서 분류를 위한 로지스틱 회귀 모델 훈련
    8.4 대용량 데이터 처리: 온라인 알고리즘과 외부 메모리 학습
    8.5 잠재 디리클레 할당을 사용한 토픽 모델링
    -8.5.1 LDA를 사용한 텍스트 문서 분해
    -8.5.2 사이킷런의 LDA
    8.6 요약

    9장 웹 애플리케이션에 머신 러닝 모델 내장
    9.1 학습된 사이킷런 추정기 저장
    9.2 데이터를 저장하기 위해 SQLite 데이터베이스 설정
    9.3 플라스크 웹 애플리케이션 개발
    -9.3.1 첫 번째 플라스크 애플리케이션
    -9.3.2 폼 검증과 화면 출력
    9.4 영화 리뷰 분류기를 웹 애플리케이션으로 만들기
    -9.4.1 파일과 폴더: 디렉터리 구조 살펴보기
    -9.4.2 메인 애플리케이션 app.py 구현
    -9.4.3 리뷰 폼 구성
    -9.4.4 결과 페이지 템플릿 만들기
    9.5 공개 서버에 웹 애플리케이션 배포
    -9.5.1 PythonAnywhere 계정 만들기
    -9.5.2 영화 분류 애플리케이션 업로드
    -9.5.3 영화 분류기 업데이트
    9.6 요약

    10장 회귀 분석으로 연속적 타깃 변수 예측
    10.1 선형 회귀
    -10.1.1 단변량 선형 회귀
    -10.1.2 다변량 선형 회귀
    10.2 주택 데이터셋 탐색
    -10.2.1 데이터프레임으로 주택 데이터셋 읽기
    -10.2.2 데이터셋의 중요 특징 시각화
    -10.2.3 상관관계 행렬을 사용한 분석
    10.3 최소 제곱 선형 회귀 모델 구현
    -10.3.1 경사 하강법으로 회귀 모델의 파라미터 구하기
    -10.3.2 사이킷런으로 회귀 모델의 가중치 추정
    10.4 RANSAC을 사용하여 안정된 회귀 모델 훈련
    10.5 선형 회귀 모델의 성능 평가
    10.6 회귀에 규제 적용
    10.7 선형 회귀 모델을 다항 회귀로 변환
    -10.7.1 사이킷런을 사용하여 다항식 항 추가
    -10.7.2 주택 데이터셋을 사용한 비선형 관계 모델링
    10.8 랜덤 포레스트를 사용하여 비선형 관계 다루기
    -10.8.1 결정 트리 회귀
    -10.8.2 랜덤 포레스트 회귀
    10.9 요약

    11장 레이블되지 않은 데이터 다루기: 군집 분석
    11.1 k-평균 알고리즘을 사용하여 유사한 객체 그룹핑
    -11.1.1 사이킷런을 사용한 k-평균 군집
    -11.1.2 k-평균 ++로 초기 클러스터 센트로이드를 똑똑하게 할당
    -11.1.3 직접 군집 vs 간접 군집
    -11.1.4 엘보우 방법을 사용하여 최적의 클러스터 개수 찾기
    -11.1.5 실루엣 그래프로 군집 품질을 정량화
    11.2 계층적인 트리로 클러스터 조직화
    -11.2.1 상향식으로 클러스터 묶기
    -11.2.2 거리 행렬에서 계층 군집 수행
    -11.2.3 히트맵에 덴드로그램 연결
    -11.2.4 사이킷런에서 병합 군집 적용
    11.3 DBSCAN을 사용하여 밀집도가 높은 지역 찾기
    11.4 요약

    12장 다층 인공 신경망을 밑바닥부터 구현
    12.1 인공 신경망으로 복잡한 함수 모델링
    -12.1.1 단일층 신경망 요약
    -12.1.2 다층 신경망 구조
    -12.1.3 정방향 계산으로 신경망 활성화 출력 계산
    12.2 손글씨 숫자 분류
    -12.2.1 MNIST 데이터셋 구하기
    -12.2.2 다층 퍼셉트론 구현
    12.3 인공 신경망 훈련
    -12.3.1 로지스틱 비용 함수 계산
    -12.3.2 역전파 알고리즘 이해
    -12.3.3 역전파 알고리즘으로 신경망 훈련
    12.4 신경망의 수렴
    12.5 신경망 구현에 관한 몇 가지 첨언
    12.6 요약

    13장 텐서플로를 사용하여 신경망 훈련
    13.1 고성능 머신 러닝 라이브러리 텐서플로
    -13.1.1 텐서플로란?
    -13.1.2 텐서플로 학습 방법
    -13.1.3 텐서플로 시작
    -13.1.4 배열 구조 다루기
    -13.1.5 텐서플로 저수준 API로 간단한 모델 개발
    13.2 tf.keras API로 다층 신경망 훈련
    -13.2.1 훈련 데이터 준비
    -13.2.2 피드포워드 신경망 구성
    -13.2.3 피드포워드 신경망 훈련
    13.3 다층 신경망의 활성화 함수 선택
    -13.3.1 로지스틱 함수 요약
    -13.3.2 소프트맥스 함수를 사용하여 다중 클래스 확률 예측
    -13.3.3 하이퍼볼릭 탄젠트로 출력 범위 넓히기
    -13.3.4 렐루 활성화 함수
    13.4 요약

    14장 텐서플로의 구조 자세히 알아보기
    14.1 텐서플로의 주요 특징
    14.2 텐서플로의 랭크와 텐서
    -14.2.1 텐서의 랭크와 크기를 확인하는 방법
    14.3 텐서를 다차원 배열로 변환
    14.4 텐서플로의 계산 그래프 이해
    14.5 텐서플로의 변수
    14.6 tf.keras API 자세히 배우기
    -14.6.1 Sequential 모델
    -14.6.2 함수형 API
    -14.6.3 tf.keras 모델의 저장과 복원
    14.7 계산 그래프 시각화
    -14.7.1 텐서보드 익숙하게 다루기
    -14.7.2 케라스의 층 그래프 그리기
    14.8 요약

    15장 심층 합성곱 신경망으로 이미지 분류
    15.1 합성곱 신경망의 구성 요소
    -15.1.1 CNN과 특성 계층 학습
    -15.1.2 이산 합성곱 수행
    -15.1.3 서브샘플링
    15.2 기본 구성 요소를 사용하여 심층 합성곱 신경망 구성
    -15.2.1 여러 개의 입력 또는 컬러 채널 다루기
    -15.2.2 드롭아웃으로 신경망 규제
    15.3 텐서플로를 사용하여 심층 합성곱 신경망 구현
    -15.3.1 다층 CNN 구조
    -15.3.2 데이터 적재와 전처리
    -15.3.3 텐서플로 tf.keras API로 CNN 구성
    -15.3.4 합성곱 신경망 모델 훈련
    -15.3.5 활성화 출력과 필터 시각화
    15.4 요약

    16장 순환 신경망으로 시퀀스 데이터 모델링
    16.1 시퀀스 데이터 소개
    -16.1.1 시퀀스 데이터 모델링: 순서를 고려한다
    -16.1.2 시퀀스 표현
    -16.1.3 시퀀스 모델링의 종류
    16.2 시퀀스 모델링을 위한 RNN
    -16.2.1 RNN 구조와 데이터 흐름 이해
    -16.2.2 RNN의 활성화 출력 계산
    -16.2.3 긴 시퀀스 학습의 어려움
    -16.2.4 LSTM 유닛
    16.3 텐서플로의 tf.keras API로 시퀀스 모델링을 위한 다층 RNN 구현
    16.4 첫 번째 프로젝트: 다층 RNN으로 IMDb 영화 리뷰의 감성 분석 수행
    -16.4.1 데이터 준비
    -16.4.2 임베딩
    -16.4.3 RNN 모델 만들기
    -16.4.4 감성 분석 RNN 모델 훈련
    -16.4.5 감성 분석 RNN 모델 평가
    16.5 두 번째 프로젝트: 텐서플로로 글자 단위 언어 모델 구현
    -16.5.1 데이터 전처리
    -16.5.2 글자 단위 RNN 모델 만들기
    -16.5.3 글자 단위 RNN 모델 훈련
    -16.5.4 글자 단위 RNN 모델로 텍스트 생성
    16.6 전체 요약

    부록 A 윈도에 아나콘다, 사이킷런, 텐서플로 설치
    A.1 아나콘다 설치
    A.2 사이킷런, 텐서플로 설치
    A.3 예제 노트북 실행
    A.4 주피터 노트북 뷰어와 구글 코랩 사용

    본문중에서

    여러분이 뛰어난 문제 해결 전문가로서 머신 러닝 기술자가 되길 원하거나 머신 러닝 연구 분야에서 경험을 쌓길 고려한다면 이 책이 도움이 될 것입니다. 초보자는 머신 러닝의 이론적 배경에 압도될 수 있습니다. 최근에 출간된 활용서들을 보면 고성능 학습 알고리즘을 구현하면서 머신 러닝을 배울 수 있을 것입니다.

    실용적인 코드 예제와 머신 러닝 애플리케이션 예제를 다루어 보는 것이 이 분야를 시작하는 좋은 방법입니다. 배운 것을 구체적인 예제로 실제 만들어 보면 광범위한 개념을 이해하는 데 도움이 됩니다. 하지만 좋은 만큼 책임도 뒤따른다는 것을 잊지 마세요! 책에서는 파이썬 프로그래밍 언어와 파이썬 기반의 머신 러닝 라이브러리를 사용하여 머신 러닝을 실습해 볼 수 있습니다. 거기에 더해서 머신 러닝 알고리즘의 수학적 이론을 소개합니다. 성공적으로 머신 러닝을 사용하기 위해 꼭 필요한 부분입니다. 따라서 책은 다른 활용서와는 달리 필수적인 머신 러닝 이론을 설명합니다. 또 머신 러닝 알고리즘의 작동 방식과 사용 방법, 특히 빠지기 쉬운 실수를 피하는 방법을 쉽고 알차게 설명합니다.

    머신 러닝에 깊게 들어가기 전에 어쩌면 가장 중요할지 모르는 "왜 파이썬이죠?"라는 질문에 답을 해 보겠습니다. 대답은 간단합니다. 강력하고 사용하기 쉽기 때문입니다. 파이썬은 데이터 과학 분야에서 가장 인기 있는 프로그래밍 언어가 되었습니다. 프로그래밍에 번거로운 부분이 없고 아이디어를 빠르게 구현할 수 있는 환경을 제공하기 때문입니다.

    우리들은 진심으로 머신 러닝을 배워 더 나은 과학자가 되었고 통찰력을 길러 어려운 문제를 해결할 수 있었습니다. 책에서 여러분과 이 지식을 나누고 싶습니다. 지식은 배움에서 얻습니다. 중요한 것은 열정입니다. 진정한 고수는 부단한 연습으로 만들어집니다. 앞으로 이따금 난관이 있거나 어떤 주제는 다른 것보다 더 어려울 수 있습니다. 하지만 이 기회를 놓치지 말고 앞으로 이룰 성과에 초점을 맞추길 바랍니다. 우리들이 여행에 함께한다는 것을 기억하세요. 책을 통해서 여러분의 도구 상자에 강력한 기술이 많이 추가될 것입니다. 데이터를 활용하여 어려운 문제를 해결하는 데 이 도구들이 도움이 될 것입니다.
    ('지은이의 말' 중에서)

    관련이미지

    저자소개

    세바스찬 라시카(Sebastian Raschka) [저] 신작알림 SMS신청 작가DB보기
    생년월일 -
    출생지 -
    출간도서 0종
    판매수 0권

    오랫동안 파이썬을 사용했고 많은 세미나에서 데이터 과학, 머신 러닝, 딥러닝의 실전 활용에 관해 발표했다. 대표적인 과학 컴퓨팅 콘퍼런스인 사이파이(SciPy) 콘퍼런스에서 머신 러닝 튜토리얼을 진행했고, 위스콘신 대학교에서 강의한다. ‘2016~2017년 학과 우수 대학원생’과 ‘2016년 ACM Computing Reviews 베스트’를 수상했다. 여가 시간에는 파이썬 오픈 소스 프로젝트에 기여하는 것을 좋아하며, 직접 개발한 도구들이 캐글 같은 머신 러닝 경연 대회에서 널리 사용되고 있다.

    바히드 미자리리(Vahid Mirjalili) [저] 신작알림 SMS신청 작가DB보기
    생년월일 -
    출생지 -
    출간도서 0종
    판매수 0권

    대규모 분자 구조 컴퓨터 시뮬레이션을 위한 새로운 방법에 관한 연구로 기계 공학 박사 학위를 취득했다. 미시간 주립 대학교의 컴퓨터 과학과 공학 대학에서 다양한 컴퓨터 비전 프로젝트의 머신 러닝 애플리케이션을 연구 중이다. 특히 딥러닝 기술을 사용해 생체 데이터의 프라이버시를 보호하는 데 관심이 많다. 자율 주행 자동차를 연구하는 엔지니어링 팀과도 협업하고 있는데, 보행자 감지를 위해 다중 스펙트럼 이미지를 사용한 신경망 모델을 설계하고 있다.

    생년월일 -
    출생지 -
    출간도서 0종
    판매수 0권

    구글 ML GDE(Machine Learning Google Developer Expert). 기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 합니다. 텐서플로 블로그(tensorflow.blog)를 운영하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.

    『핸즈온 머신러닝』, 『텐서플로 첫걸음』(이상 한빛미디어), 『케라스 창시자에게 배우는 딥러닝』(길벗)을 우리말로 옮겼습니다.

    이벤트 기획전

    • 기획전

      이벤트 기간

      2019/06/12 ~ 2019/09/30

      이벤트 도서 2,5000원 이상 구매 시 , <개발자 데스크 매트> 증정 (포인트 차감)

      *자세한 내용은 이벤트 페이지에서 확인해 주세요.

    이 책과 내용이 비슷한 책 ? 내용 유사도란? 이 도서가 가진 내용을 분석하여 기준 도서와 얼마나 많이 유사한 콘텐츠를 많이 가지고 있는가에 대한 비율입니다.

      리뷰

      10.0 (총 0건)

      기대평

      작성시 유의사항

      평점
      0/200자
      등록하기

      기대평

      9.0

      교환/환불

      교환/환불 방법

      ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

      교환/환불 가능 기간

      고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

      교환/환불 비용

      고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

      교환/환불 불가사유

      반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
      배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

      소비자 피해보상

      소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
      교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

      기타

      도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

      배송안내

      • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

      • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

      • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

      • 배송비

      도서(중고도서 포함) 구매

      2,000원 (1만원이상 구매 시 무료배송)

      음반/DVD/잡지/만화 구매

      2,000원 (2만원이상 구매 시 무료배송)

      도서와 음반/DVD/잡지/만화/
      중고직배송상품을 함께 구매

      2,000원 (1만원이상 구매 시 무료배송)

      업체직접배송상품 구매

      업체별 상이한 배송비 적용