간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (22,230원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (16,380원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (18,720원)
(최대할인 4만원 / 2만원 이상 결제)
Close

모두를 위한 메타러닝 : PyTorch를 활용한 Few-shot 학습 모델과 빠른 강화학습 에이전트 만들기

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 247
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

26,000원

  • 23,400 (10%할인)

    1,300P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 4/1(토) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(52)

  • 상품권

AD

책소개

위키북스 데이터 사이언스 시리즈

이 책은 최근 인공지능과 머신러닝 분야에서 각광받고 있는 메타러닝에 대한 입문 서적입니다. 독자 여러분께서 다소 생소할 수 있는 메타러닝에 대한 개념을 이해하고 실제로 세부 알고리즘들까지 구현해보는 기회를 제공하는 것을 목표로 합니다. 특히 메타러닝에서 회귀 문제, 분류 문제를 다루는 메타 지도학습뿐 아니라, 강화학습을 소개하고 이에 대해 메타러닝을 적용한 메타 강화학습까지 심도 있게 다루는 것이 이 책의 큰 장점입니다. 처음에는 다소 생소할 수 있지만, 꾸준히 이 책을 반복해서 읽고 실습하면 멋진 최신 머신러닝 기술인 메타러닝을 한층 깊이 이해할 수 있을 것입니다.

★ 이 책에서 배우는 내용 ★

◎ 아나콘다 설치와 활용, PyTorch 및 Torchmeta 라이브러리 활용
◎ 머신러닝에서의 메타러닝의 개념
◎ 메타 지도학습의 개념 및 여러 알고리즘 소개
◎ 기본 강화학습 개요
◎ 메타 강화학습의 개념 및 여러 알고리즘 소개
◎ 오픈챌린지와 메타러닝 애플리케이션

목차

▣ 1장: 메타러닝 개요
1.1 머신러닝과 딥러닝
1.2 메타러닝이란?
1.3 메타러닝 학습 환경 구축
___1.3.1 아나콘다 설치와 사용
___1.3.2 아나콘다 설치
___1.3.3 깃허브 저장소 클론 및 환경 구축

▣ 2장: 메타 지도학습
2.1 메타러닝 문제 정의
___2.1.1 태스크 정의
___2.1.2 메타러닝 데이터셋
___2.1.3 메타러닝
___2.1.4 실습: Torchmeta 라이브러리 소개
2.2 모델 기반 메타러닝
___2.2.1 모델 기반 메타러닝의 핵심 개념
___2.2.2 NTM(Neural Turing Machines)
___2.2.3 MANN(Memory-Augmented Neural Networks)
___2.2.4 실습: MANN 구현
___2.2.5 SNAIL(Simple Neural Attentive Meta-Learner)
___2.2.6 실습: SNAIL 구현
2.3 최적화 기반 메타러닝
___2.3.1 전이학습과 최적화 기반 메타러닝
___2.3.2 MAML과 FOMAML
___2.3.3 실습: MAML-Regression
___2.3.4 실습: MAML-Classification
2.4 메트릭 기반 메타러닝
___2.4.1 KNN과 메트릭 기반 메타러닝
___2.4.2 Matching 네트워크
___2.4.3 실습: Matching 네트워크 구현
___2.4.4 Prototypical 네트워크
___2.4.5 실습: Prototypical 네트워크 구현
2.5 메타러닝 알고리즘 속성과 장단점
___2.5.1 메타러닝 알고리즘의 세 가지 속성
___2.5.2 메타러닝 알고리즘 비교

▣ 3장: 강화학습 개요
3.1 마르코프 결정 과정, 정책, 가치함수
___3.1.1 마르코프 결정 과정
___3.1.2 정책과 강화학습의 목표
___3.1.3 가치 함수
3.2 탐험과 활용
3.3 강화학습 알고리즘의 종류
___3.3.1 On-policy와 Off-policy
___3.3.2 정책 기반 알고리즘
___3.3.3 가치 기반 알고리즘
___3.3.4 액터 크리틱 알고리즘
3.4 TRPO(Trust Region Policy Optimization)
___3.4.1 TRPO 아이디어
___3.4.2 Surrogate 목적 함수와 제약 조건
___3.4.3 켤레 그라디언트법 기반 최적화
3.5 PPO(Proximal Policy Optimzation)
___3.5.1 PPO 아이디어
___3.5.2 Clipped Surrogate 목적함수
___3.5.3 PPO 알고리즘
3.6 SAC(Soft Actor Critic)
___3.6.1 엔트로피
___3.6.2 최대 엔트로피 강화학습
___3.6.3 가치함수 및 정책 학습
___3.6.4 SAC 알고리즘

▣ 4장: 메타 강화학습
4.1 메타 강화학습
___4.1.1 태스크 개념 소개
___4.1.2 메타 강화학습 문제 정의
___4.1.3 MuJoCo 및 Half-Cheetah 환경 개념 소개
4.2 순환 정책 메타 강화학습
___4.2.1 GRU
___4.2.2 순환 정책 메타 강화학습
___4.2.3 RL2
___4.2.4 실습: RL2 구현
4.3 최적화 기반 메타 강화학습
___4.3.1 MAML-RL
___4.3.2 실습: MAML-RL 구현
4.4 컨텍스트 기반 메타 강화학습
___4.4.1 태스크 추론 관점에서의 메타 강화학습
___4.4.2 컨텍스트 기반 정책
___4.4.3 변분적 추론
___4.4.4 PEARL(Probabilistic Embeddings for Actor critic RL)
___4.4.5 실습: PEARL 구현

▣ 5장: 오픈 챌린지와 메타러닝 애플리케이션
5.1 오픈 챌린지(Open Chanllenges)
___5.1.1 메타 과적합
___5.1.2 치명적 망각과 지속 학습
___5.1.3 부족한 벤치마크
___5.1.4 부족한 레이블된 데이터와 메타 비지도 학습
5.2 메타러닝 애플리케이션
___5.2.1 컴퓨터 비전
___5.2.2 강화학습
___5.2.3 자연어 처리
___5.2.4 의료
___5.2.5 마치며

관련이미지

저자소개

정창훈 [저] 신작알림 SMS신청
생년월일 -

동국대학교에서 컴퓨터공학을 전공하고 서울대학교 컴퓨터공학부에서 박사과정 중에 있다. 메타러닝을 연구하고, 최근에는 메타 강화학습, 오프라인 강화학습에 관심을 가지고 연구하고 있다.

이승현 [저] 신작알림 SMS신청
생년월일 -

현대중공업에서 설계 엔지니어로 일했으며 현재 포항공과대학교 IT융합공학에서 박사과정 중에 있다. 학위주제로 의료분야에서의 환자 개인화 및 치료 자동화 인공지능을 연구해왔으며, 최근에는 파운데이션 모델의 임상적 적용에 관심을 가지고 연구 중이다.

이동민 [저] 신작알림 SMS신청
생년월일 -

한양대학교에서 컴퓨터공학을 전공했으며, 이후에 서울대학교 로봇 학습 연구실, 바이오지능 연구실에서 머신러닝에 관한 다양한 연구 경험을 쌓았다. 현재는 마키나락스에서 머신러닝 엔지니어로서 실제 문제에 ML 기술과 MLOps 기술을 적용하는 데에 많은 관심을 가지고 있다.

장성은 [저] 신작알림 SMS신청
생년월일 -

동국대학교에서 의생명공학 학사, 컴퓨터공학 학사/석사 학위를 받았습니다. 현재는 서울대학교 협동과정 생물정보학전공 박사과정에서 메타러닝을 포함한 다양한 머신러닝 기술을 통해 생물학 데이터를 분석하는 연구를 수행하고 있습니다. 이 책의 글 및 코드 개발과 함께 삽화 작업을 도맡아 진행했습니다.

이승재 [저] 신작알림 SMS신청
생년월일 -

프린스턴 대학교에서 수학을 전공했다. 현재 블룸버그에서 언어모델 개발 및 상용화 업무를 맡고 있다.

윤승제 [저] 신작알림 SMS신청
생년월일 -

아주대학교에서 기계공학을 전공했고, KAIST 조천식 모빌리티 대학원에서 석사과정 동안 차량 거동 예측과 모델 예측 제어(model predictive control) 등을 연구했다. 모라이에서 인식(perception) 파트를 맡았으며, 현재 뉴빌리티 자율주행 팀에 소속되어 있다.

최성준 [감수]
생년월일 -

서울대학교 전기컴퓨터공학과에서 학사/박사 학위를 받았다. 카카오브레인과 디즈니 리서치를 거쳐 고려대학교 인공지능학과 조교수로 일하고 있다.

이 상품의 시리즈

(총 54권 / 현재구매 가능도서 53권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    0.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용