간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 12/1~12/31 기간 중 1회)
인터파크 롯데카드 5% (22,230원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (16,380원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (18,720원)
(최대할인 4만원 / 2만원 이상 결제)
Close

딥러닝 부트캠프 with 케라스 : 우분투, CUDA, cuDNN 설치부터 이미지 분류

원제 : 實裝ディ-プラ-ニング
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 36
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기

물체 검출, 강화 학습까지 학습한다!

정가

26,000원

  • 23,400 (10%할인)

    1,300P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서

  • 상품권

AD

책소개

GPU 실습 환경 준비부터 이미지 분류, 물체 검출, 강화 학습까지

딥러닝은 이미지 인식, 음성 인식, 자연어 처리 등의 분야에서 가장 활발하게 이용되고 있다. 이 책은 그중 ‘이미지 인식’에 초점을 맞춰 이미지 클래스 분류, 물체 검출 등을 케라스로 쉽고 빠르게 실습하면서 딥러닝의 원리를 익히도록 구성했다. 또한, 게임, 자율 주행 등에 많이 활용되는 강화 학습으로 삼목 게임에 강한 컴퓨터도 만들어 본다.

출판사 서평

[출판사 리뷰]
딥러닝, 케라스로 더 쉽고 빠르게 구현하자!

케라스로 더 쉽게 구현하자!
케라스는 공식 문서에서 “30초면 시작한다”라고 할 만큼 사용법이 간단합니다. 이미지 분류와 물체 검출을 단계별로 쉽고 빠르게 케라스로 구현해 봅니다.

강화 학습을 경험하자!
게임, 자율 주행, 금융 데이터 분석 등에서 많이 활용되는 강화 학습을 이용해 스스로 삼목 게임을 학습하는 컴퓨터를 만들어 봅니다.

실습하면서 원리를 익히자!
학습에 필요한 주요 개념을 간결하게 배우고 예제를 실습하며 핵심 원리를 익힙니다.

이 책에서 다루는 내용
- 우분투 설치부터 CUDA, cuDNN, 케라스 설치와 같은 딥러닝 실습 환경 구축
- 전결합 신경망, 합성곱 신경망(CNN), 활성화 함수, 경사 하강법, 오차역전파법과 같은 핵심 이론
- VGG-16, ResNet-152를 이용한 이미지 클래스 분류 및 예측 정확도 향상 기법
- 23층, 26층 네트워크를 이용한 물체 검출
- 삼목 게임을 스스로 학습하는 강화 학습(DQN)

목차

1장 이 책의 개요와 준비
1.1 이 책의 구성
__딥러닝의 성과
__이 책에서 학습하는 내용 : 이미지의 클래스 분류, 물체 검출, 강화 학습
__이 책에서 다루는 기법 : 사전 학습된 모델의 이용
1.2 이 책에서 사용하는 데이터셋
1.3 사용하는 기기와 소프트웨어
__사용하는 프레임워크
__GPU의 이용
__사용하는 기기 : 게임용 PC
__OS 및 미들웨어
1.4 소프트웨어 설치
__OS 설치
__미들웨어 설치
1.5 예제 파일 내려받기
__파일 내려받기
__내려받은 파일의 압축 풀기

2장. 네트워크의 구성
2.1 순전파형 네트워크
__전결합 신경망
__합성곱 신경망(CNN)
2.2 합성곱 신경망
__합성곱층
__풀링층
__업샘플링층
2.3 이 책에서 사용하는 네트워크 패턴

3장 기본 용어
3.1 딥러닝의 처리 개요
3.2 활성화 함수
3.3 손실 문제
3.4 확률적 경사 하강법
__가중치 업데이트의 계산 예
__모멘텀
3.5 오차역전파법
3.6 과학습
__밸리데이션 데이터셋을 사용한 에폭 수 결정
__정규화
__드롭아웃
3.7 데이터 확장과 전처리
3.8 사전 학습된 모델
3.9 학습 계수 조정

4장. 이미지 클래스의 분류
4.1 개요
4.2 공통 데이터의 구축
__이미지 데이터셋 내려받기
__데이터 추출과 기본 데이터셋의 구축
__데이터 확장과 공통 데이터셋의 구축
4.3 9층의 네트워크로 클래스 분류
__네트워크의 개요
__학습과 모델 만들기
__모델 읽기와 예측 실행
__실행
4.4 VGG-16으로 클래스 분류 : 16층의 사전 학습된 모델
__VGG-16의 개요
__프로그램의 개요
__실행
4.5 ResNet-152로 클래스 분류 : 152층의 사전 학습된 모델
__ResNet의 개요
__실행 환경 설치
__프로그램의 개요
__실행
4.6 예측 정확도 더 향상시키기
__개요
__복수 모델 사용
__2단계 일반화
__자기 학습

5장. 물체 검출
5.1 물체의 위치 검출 : 26층의 네트워크
__물체의 위치와 크기, 종류 예측
__사용하는 소프트웨어의 특성
__실행 환경 설치
__사전 학습된 모델을 이용하여 물체 검출
__오브젝트를 학습하여 물체 검출
5.2 물체의 형태 검출 : 23층의 네트워크
__물체의 위치와 크기, 형태 예측
__사용하는 모델과 특성
__프로그램의 개요
__실행 예

6장. 강화 학습 : 삼목 게임에 강한 컴퓨터 키우기
6.1 강화 학습
__강화 학습의 개요
__Q 러닝
__DQN
6.2 기본 틀
__환경과 에이전트
__실행 개요
__환경 규칙
6.3 실행 환경의 설치
6.4 Q 러닝과 딥러닝
6.5 실행 사례

부록
A Yolo용 오브젝트의 위치 정보를 만드는 방법
__BBox-Label-Tool 설치
__오브젝트의 위치 정보 만들기
B 주요 예제 소스
__4장에서 사용한 예제 소스
__5장에서 사용한 예제 소스
__6장에서 사용한 예제 소스

본문중에서

‘자동차의 자율 주행’처럼 꿈 같은 이야기도 몇 년 후에는 예사로운 일일 것입니다. 자동차가 자율 주행을 하려면 높은 수준의 기술이 필요합니다. 그중 하나가 정확한 센서 역할을 담당하는 이미지 인식입니다. 또 하나는 사람에 가깝게 좀 더 수준 높은 예측을 가능하게 하는 강화 학습입니다. 책은 이 두 가지에 초점을 맞추어 딥러닝을 이용한 샘플 프로그램을 보여 주며 실전 기법도 함께 소개합니다.

- [지은이의 말] 중에서

저자의 이야기처럼 이미 인공지능은 우리 생활 주변의 여러 곳에서 활용됩니다. 인공지능 청소기, 인공지능 스피커, 시리, 구글 어시스턴트 등 예를 들자면 끝이 없습니다. 나아가 자동차 자율 주행뿐만 아니라 인간처럼 행동하는 로봇도 곧 등장하지 않을까 싶습니다. 역자는 투자 전문가로 오랜 시간을 보냈는데, 특히 퀀트 투자에 관심이 많았습니다. 머신 러닝의 많은 부분이 퀀트 투자의 프로세스 및 방법에 영향을 미치면서 상호 발전합니다.
이 책에서는 이미지 인식과 물체 검출을 중심으로 서술하지만, 그 원리와 방법은 여러 분야에 응용할 수 있으리라 봅니다. 역자가 관심이 많은 투자 분야에서도 이 책에 나오는 CNN(합성곱 신경망)을 이용하여 주식 가격의 패턴들을 인식한다면 매우 재미있는 결과를 얻을 수 있지 않을까 합니다. 강화 학습으로 트레이더가 미지의 투자 환경에서 좀 더 똑똑하게 대응한다면 그 결과 역시 매우 흥미로울 것입니다.

- [옮긴이의 말] 중에서

관련이미지

저자소개

후지타 카즈야 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

생년월일 -

해당작가에 대한 소개가 없습니다.

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용