간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (19,670원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (14,490원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (16,560원)
(최대할인 4만원 / 2만원 이상 결제)
Close

그림과 수식으로 배우는 통통 머신러닝 : 머신러닝의 개념부터 실용적인 알고리즘까지 한 권에!

원제 : イラストで學ぶ 機械學習: 最小二乘法による識別モデル學習
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 70
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

23,000원

  • 20,700 (10%할인)

    1,150P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 출고완료 후 14일 이내 마이페이지에서 적립받기한 경우만 적립됩니다.
추가혜택
배송정보
  •  당일배송을 원하실 경우 주문시 당일배송을 선택해주세요.
  • 서울시 강남구 삼성로 512변경
  • 배송지연보상 안내
  • 무료배송
  • 해외배송가능
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(25)

  • 사은품(10)

책소개

여러 형태의 과업을 해결하기 위한 패턴 분류 알고리즘부터 최소제곱 학습으로 배우는 최첨단 머신러닝 학습 기법까지!

최첨단 머신러닝 학습 기법의 대부분은 사실 고전적인 최소제곱 학습의 확장으로 해석할 수 있다. 이 책은 이런 관점에서 다양한 학습 기법을 최소제곱 학습에 기초하여 소개한다. 따라서 최소제곱 학습만 확실히 이해해 둔다면, 중간 규모 정도의 데이터에 대한 고도의 학습 기법을 적용할 수 있다.

출판사 서평

여러 형태의 과업을 해결하기 위한 패턴 분류 알고리즘부터 최소제곱 학습으로 배우는 최첨단 머신러닝 학습 기법까지!

최첨단 머신러닝 학습 기법의 대부분은 사실 고전적인 최소제곱 학습의 확장으로 해석할 수 있다. 이 책은 이런 관점에서 다양한 학습 기법을 최소제곱 학습에 기초하여 소개한다. 따라서 최소제곱 학습만 확실히 이해해 둔다면, 중간 규모 정도의 데이터에 대한 고도의 학습 기법을 적용할 수 있다. 또한, 이 책은 머신러닝의 큰 그림과 함께 다양한 형태의 과제를 해결할 수 있는 학습 알고리즘을 소개한다. 특히, 최소제곱 학습을 기반으로 한 MATLAB 구현 예를 제공하므로 실험 결과를 간단히 재현해 볼 수 있다.

이 책의 주요 내용

1부: 시작하며
- 지도 학습
- 비지도 학습
- 강화 학습
2부: 지도 학습 기반 회귀
- 최소제곱 학습
- 제약 최소제곱 학습 /희소 학습
- 로버스트 학습
3부: 지도 학습 기반 분류
- 서포트 벡터 분류기
- 앙상블 분류
- 배깅과 부스팅
- 로지스틱 회귀
- 최소제곱 확률적 분류기
- 조건부 확률장
4부: 비지도 학습
- 비지도 학습 기법
- 차원 축소 기법
- 클러스터링 기법
5부: 심화 학습
- 순차적 학습 기법
- 반지도 학습 기법
- 지도 학습 기반의 차원 축소 기법
- 전이 학습 기법
- 멀티 태스크 학습 기법

목차

PART 1 시작하며 1
CHAPTER 1 머신러닝이란? 2

1.1 학습의 종류 3
1.2 머신러닝 과업들 5
1.3 머신러닝의 접근법 8

CHAPTER 2 학습 모델 12
2.1 선형 모델 12
2.2 커널 모델 15
2.3 계층 모델 18

PART 2 지도 학습 기반 회귀 21
CHAPTER 3 최소제곱 학습 22

3.1 최소제곱 학습 22
3.2 최소제곱해의 성질 25
3.3 대규모 데이터를 다루기 위한 학습 알고리즘 27

CHAPTER 4 제약 최소제곱 학습 32
4.1 부분 공간 제약 최소제곱 학습 33
4.2 제약 최소제곱 학습 34
4.3 모델 선택 38

CHAPTER 5 희소 학습 44
5.1 제약 최소제곱 학습 44
5.2 제약 최소제곱 학습의 해를 구하는 방법 46
5.3 희소 학습에 의한 특징 선택 51
5.4 제약 최소제곱 학습 52
5.5 제약 최소제곱 학습 53

CHAPTER 6 로버스트 학습 56
6.1 손실 최소화 학습 57
6.2 후버 손실 최소화 학습 59
6.3 튜키 손실 최소화 학습 64
6.4 제약 후버 손실 최소화 학습 66

PART 3 지도 학습 기반 분류 71
CHAPTER 7 최소제곱 학습 기반 분류 72

7.1 최소제곱 분류 72
7.2 0/1 손실과 마진 75
7.3 다중 클래스 78

CHAPTER 8 서포트 벡터 분류 81
8.1 마진 최대화 분류 81
8.2 서포트 벡터 분류기의 해를 구하는 방법 84
8.3 희소성 87
8.4 커널 트릭을 이용한 비선형화 89
8.5 힌지 손실 최소화 학습 관점에서의 해석 91
8.6 램프 손실을 이용한 로버스트 학습 94

CHAPTER 9 앙상블 분류 99
9.1 결정주 분류 100
9.2 배깅 102
9.3 부스팅 106

CHAPTER 10 확률적 분류 114
10.1 로지스틱 회귀 114
10.2 최소제곱 확률적 분류 119

CHAPTER 11 연속열 데이터의 분류 124
11.1 연속열 데이터의 모형화 124
11.2 조건부 확률장 모형의 학습 129
11.3 조건부 확률장 모형을 이용한 레이블 연속열 예측 131

PART 4 비지도 학습 133
CHAPTER 12 이상 검출 134

12.1 국소 이상 인자 134
12.2 서포트 벡터 이상 검출 137
12.3 밀도비 기반 이상 검출 140

CHAPTER 13 비지도 기반 차원 축소 145
13.1 선형 차원 축소의 개요 146
13.2 주성분 분석 147
13.3 국소성 보존 사영 150
13.4 커널 주성분 분석 153
13.5 라플라스 고유사상 156

CHAPTER 14 클러스터링 159
14.1 K-평균 클러스터링 159
14.2 커널 K-평균 클러스터링 161
14.3 스펙트럴 클러스터링 163
14.4 파라미터의 자동 결정 165

PART 5 심화 학습 171
CHAPTER 15 온라인 학습 172

15.1 수동 공격 학습 172
15.2 적응 규제화 학습 179

CHAPTER 16 반지도 학습 184
16.1 입력 데이터가 이루는 다양체 구조의 활용 184
16.2 라플라스 규제화 최소제곱 학습의 해를 구하는 방법 187
16.3 라플라스 규제화에 대한 해석 189

CHAPTER 17 지도 학습 기반 차원 축소 191
17.1 분류 문제에 대한 판별 분석 191
17.2 충분 차원 축소 198

CHAPTER 18 전이 학습 200
18.1 공변량 시프트 상황에서의 전이 학습 200
18.2 클래스 밸런스 변화 상황에서의 전이 학습 208

CHAPTER 19 멀티 태스크 학습 215
19.1 최소제곱 회귀를 이용한 멀티 태스크 학습 215
19.2 최소제곱 확률적 분류기를 이용한 멀티 태스크 학습 218
19.3 다차원 출력 함수의 학습 220

PART 6 마무리하며 225
CHAPTER 20 앞으로의 전망 226


참고문헌 230
찾아보기 231

본문중에서

제약 최소제곱 학습과 교차 확인법을 함께 사용하는 것은 실제 응용에서 매우 유용한 회귀 방법이다. 그러나 파라미터 수가 많으면, 해나 학습한 함수의 출력값을 계산하는 데 시간이 많이 걸리는 문제가 있다. 이번 장에서는 파라미터의 대부분이 0으로 학습되는 것이 특징인 희소 학습을 소개한다. 파라미터 대부분이 0이 되므로 해나 학습한 함수의 출력을 빠르게 계산하는 데 도움이 된다.
(/ p.44)

실제 문제에서 대규모의 훈련 표본을 다룰 때에는 많든 적든 어느 정도의 이상값이 포함되어 있다고 보는 것이 당연하다. 이 때문에 최소제곱 학습은 이런 경우에는 신뢰성이 낮다고 할 수 있다. 통계학이나 머신러닝 분야에서는 이상값에 대한 견고성(안정성)을 로버스트성(robustness)이라고 부른다. 훈련 표본에 이상값이 섞여 있을 때에는 이상값을 처음부터 제거하고 학습을 실시하거나 이상값을 그대로 둔 채 영향을 덜 받는 방향으로 학습을 수행하는 것이 바람직하다. 전자에 해당하는 이상값 소거에 대해서는 12장에서 설명하도록 하고, 이번 장에서는 이상값에 대해 높은 안정성을 갖는 로버스트 학습을 소개하겠다.
(/ p.56)

여기까지 2 클래스 패턴 인식 문제를 중심으로 살펴보았다. 그러나 알파벳 문자 인식의 예만 보아도 26 클래스나 되며, 한자 인식 문제는 클래스 수가 적게는 수백, 많게는 수천에 이른다. 다중 클래스 패턴 인식 문제를 푸는 직접적인 방법은 10장에서 소개하기로 하고, 이번 절에서는 2 클래스 패턴 인식의 방법을 확장하여 다중 클래스 패턴 인식 문제를 푸는 방법을 두 가지 소개하도록 한다.
(/ p.78)

그 외에도 오류 정정 부호를 사용하여 각각의 클래스를 10011이나 01010 따위로 부호화하여 각 비트를 2 클래스 분류기로 예측하는 오류 수정 출력 부호라 불리는 방법도 제안되었다. 그러나 오류 수정 부호를 적절하게 설계하는 과정이 쉽지 않다는 단점이 있다. 10장에서 다중 클래스 분류 문제를 직접 푸는 알고리즘을 소개하겠지만, 그렇다고 반드시 다중 클래스 분류 문제를 직접 풀어야 하는 것은 아니다. 왜냐하면, 다중 클래스 분류 문제는 일반적으로 2 클래스 분류 문제에 비해 학습이 어렵기 때문이다. 따라서 목적과 상황에 맞게 적절한 방법을 택하는 것이 현실적이라 할 수 있다.
(/ p.80)

문자열을 낱낱의 문자로 인식하는 것은 지금까지 소개한 다양한 방법을 적용할 수 있다. 그러나 문자가 출현하는 데는 같은 문자가 연속하여 출현한다든가, 어떤 문자 뒤에는 어떤 문자가 자주 나온다든가 하는 전후관계가 관련되어 있다. 이러한 규칙성을 활용하면 문자열의 인식 정밀도를 향상시킬 수 있다. 한편, 문자열 안의 모든 문자를 동시에 인식하려면 클래스 수가 문자열 길이의 제곱에 비례하는 지수적 증가를 보이기 때문에 학습이 어렵다. 그래서 이번 장에서는 문자열의 부분적 전후관계를 이용하여 실용적인 계산 시간 내에서 학습할 수 있는 조건부 확률장이라는 기법을 소개하겠다.
(/ p.124)

관련이미지

저자소개

스기야마 마사시(杉山將) [저] 신작알림 SMS신청 작가DB보기
생년월일 1974~
출생지 일본 오사카
출간도서 2종
판매수 153권

1974년 오사카에서 태어났다. 도쿄공업대학 공학부 정보공학과를 졸업하고(1997년) 동(同)대학 박사과정을 수료하였으며(2001년), 준교수로도 지냈다(2007년). 현재는 도쿄대학 대학원 신영역창성과학 연구과 복잡이공학 전공교수이며, 머신러닝 이론 연구 및 알고리즘 개발, 신호 이미지 처리 등에 대한 응용 연구를 계속하고 있다. 2011년에 정보처리학회 나가오마코토 기념특별상을 수상하기도 했다. 저서로는 [統計的機械學習(통계적 머신러닝)](OHM), [Density Ratio Estimation in Machine Learning](Cambridge University Press) 등이 있으며, 크리스토퍼 비숍의

펼쳐보기

저자의 다른책

전체보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

연세대학교 문헌정보학과를 졸업하고 모교 중앙도서관과의 인연으로 도서관 솔루션 업체에서 일하게 되면서 개발을 시작했다. 네이버에서 웹 서비스 개발 업무를 맡았으며, 웹 서비스 외에 기계학습에 대한 공부도 꾸준히 하고 있다. 최근 관심사는 회사에 속하지 않고도 지속 가능한 삶이다. 옮긴 책으로 『딥러닝 제대로 시작하기』, 『그림과 수식으로 배우는 통통 딥러닝』 등 10여 종이 있다.

역자의 다른책

전체보기
펼쳐보기

이 상품의 시리즈

(총 26권 / 현재구매 가능도서 26권)

펼쳐보기

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    교환/환불

    교환/환불 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

    교환/환불 가능 기간

    고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

    교환/환불 비용

    고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

    교환/환불 불가사유

    반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
    배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

    소비자 피해보상

    소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
    교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

    기타

    도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

    배송안내

    • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

    • 배송비

    도서(중고도서 포함) 구매

    2,000원 (1만원이상 구매 시 무료배송)

    음반/DVD/잡지/만화 구매

    2,000원 (2만원이상 구매 시 무료배송)

    도서와 음반/DVD/잡지/만화/
    중고직배송상품을 함께 구매

    2,000원 (1만원이상 구매 시 무료배송)

    업체직접배송상품 구매

    업체별 상이한 배송비 적용