간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (20,520원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (15,120원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (17,280원)
(최대할인 4만원 / 2만원 이상 결제)
Close

텐서플로로 시작하는 딥러닝 : 합성곱 신경망 중심의 딥러닝 알고리즘

원제 : TENSORFLOWで學ぶディ-プラ-ニング入門 疊みこみニュ-ラルネットワ-ク徹底解說
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 29
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

24,000원

  • 21,600 (10%할인)

    1,200P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 10/5(수) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(33)

  • 상품권

AD

책소개

텐서플로를 이용하여 ‘합성곱 신경망(CNN)’의 구조를 완벽히 이해한다!

이 책은 머신러닝과 데이터 분석을 제대로 배운 적이 없는 개발자를 대상으로 한다. 딥러닝의 대표적 예인 ‘합성곱 신경망(CNN)’의 구조를 근본부터 이해하고, 텐서플로를 이용해 실제로 동작하는 코드를 작성하는 것이 이 책의 목표다. 그리고 다수의 뉴런이 여러 층 결합된 ‘다층 신경망’ 내에서 대체 무슨 일이 일어나는지, 딥러닝 알고리즘은 어떤 원리로 학습하는지를 알려 준다.

출판사 서평

텐서플로를 이용하여 ‘합성곱 신경망(CNN)’의 구조를 완벽히 이해한다!

이 책은 머신러닝과 데이터 분석을 제대로 배운 적이 없는 개발자를 대상으로 한다. 딥러닝의 대표적 예인 ‘합성곱 신경망(CNN)’의 구조를 근본부터 이해하고, 텐서플로를 이용해 실제로 동작하는 코드를 작성하는 것이 이 책의 목표다. 그리고 다수의 뉴런이 여러 층 결합된 ‘다층 신경망’ 내에서 대체 무슨 일이 일어나는지, 딥러닝 알고리즘은 어떤 원리로 학습하는지를 알려 준다.

딥러닝의 밑바닥에는 머신러닝의 원리가 있는데, 간단한 행렬 계산과 기초적인 미분을 알면 그 구조를 이해하기가 그리 어렵지 않다. 이 책은 필기 문자를 인식하도록 처리하는 합성곱 신경망에 대해, 그리고 이를 구성하는 각 요소의 역할을 신중하게 설명한다. 또한, 딥러닝의 대표 라이브러리인 텐서플로를 이용해 실제로 동작하는 코드를 보여줌으로써 각 요소의 동작 원리를 확인할 수 있도록 구성되어 있다. 레고 블록을 끼워 맞추듯이 네트워크 구성 요소를 늘려 감으로써 인식 정확도가 향상되는 모습을 관찰할 수 있을 것이다.

부디 이 책을 통해 딥러닝의 근본 원리를 이해하고 텐서플로 코드 작성법을 학습하여 다음 단계로 도약하는 계기가 되길 바란다.

이 책의 대상 독자
● 머신러닝, 데이터 분석 전문가는 아니지만 AI 기술에 관심이 있는 분
● 딥러닝 알고리즘이 어떻게 구성되어 있는지 알고 싶은 분
● 텐서플로 공식 예제 코드를 제대로 활용하기 어려운 분

목차

CHAPTER 1 텐서플로 입문 1
1.1 딥러닝과 텐서플로 4
1.1.1 머신러닝의 개념 4
1.1.2 신경망의 필요성 7
1.1.3 딥러닝의 특징 13
1.1.4 텐서플로를 이용한 파라미터 최적화 16
1.2 환경 준비 24
1.2.1 CentOS 7에서의 준비 과정 25
1.2.2 주피터 사용법 28
1.3 텐서플로 훑어보기 33
1.3.1 다차원 배열을 이용한 모델 표현 33
1.3.2 텐서플로 코드를 이용한 표현 35
1.3.3 세션을 이용한 트레이닝 실행 39

CHAPTER 2 분류 알고리즘의 기초 47
2.1 로지스틱 회귀를 이용한 이항 분류기 49
2.1.1 확률을 이용한 오차 평가 49
2.1.2 텐서플로를 이용한 최우추정 실행 54
2.1.3 테스트 세트를 이용한 검증 65
2.2 소프트맥스 함수와 다항 분류기 69
2.2.1 선형 다항 분류기의 구조 69
2.2.2 소프트맥스 함수를 이용한 확률로의 변환 73
2.3 다항 분류기를 이용한 필기 문자 분류 76
2.3.1 MNIST 데이터 세트 이용 방법 76
2.3.2 이미지 데이터의 분류 알고리즘 79
2.3.3 텐서플로를 이용한 트레이닝 실행 84
2.3.4 미니 배치와 확률적 경사 하강법 90

CHAPTER 3 신경망을 이용한 분류 95
3.1 단층 신경망의 구조 97
3.1.1 단층 신경망을 이용한 이항 분류기 97
3.1.2 은닉 계층의 역할 100
3.1.3 노드 개수와 활성화 함수 변경에 따른 효과 110
3.2 단층 신경망을 이용한 필기 문자 분류 113
3.2.1 단층 신경망을 이용한 다항 분류기 113
3.2.2 텐서보드를 이용한 네트워크 그래프 확인 116
3.3 다층 신경망으로의 확장 124
3.3.1 다층 신경망의 효과 124
3.3.2 특징 변수에 기반한 분류 로직 128
3.3.3 보충: 파라미터가 극솟값으로 수렴하는 예 133

CHAPTER 4 합성곱 필터를 통한 이미지 특징 추출 137
4.1 합성곱 필터의 기능 139
4.1.1 합성곱 필터의 예 139
4.1.2 텐서플로를 이용한 합성곱 필터 적용 142
4.1.3 풀링 계층을 이용한 이미지 축소 150
4.2 합성곱 필터를 이용한 이미지 분류 153
4.2.1 특징 변수를 이용한 이미지 분류 153
4.2.2 합성곱 필터의 동적인 학습 159
4.3 합성곱 필터를 이용한 필기 문자 분류 163
4.3.1 세션 정보의 저장 기능 163
4.3.2 단층 CNN을 이용한 필기 문자 분류 165
4.3.3 동적으로 학습된 필터 확인 171

CHAPTER 5 합성곱 필터의 다층화를 통한 성능 향상 177
5.1 합성곱 신경망의 완성 179
5.1.1 다층형 합성곱 필터를 이용한 특징 추출 179
5.1.2 텐서플로를 이용한 다층 CNN 구현 184
5.1.3 필기 문자의 자동 인식 애플리케이션 189
5.2 그 밖의 주제 195
5.2.1 CIFAR-10(컬러 사진 이미지) 분류를 위한 확장 195
5.2.2 ‘A Neural Network Playground’를 이용한 직감적 이해 199
5.2.3 보충: 오차 역전파법을 이용한 기울기 벡터 계산 204

APPENDIX 부록 213
A 맥OS와 윈도우에서의 환경 준비 방법 214
A.1 맥OS의 환경 준비 과정 214
A.2 윈도우10의 환경 준비 과정 218

B 파이썬 2의 기본 문법 225
B.1 Hello, World!와 자료형, 연산 225
B.2 문자열 226
B.3 리스트와 딕셔너리 228
B.4 제어구문 230
B.5 함수와 모듈 233
C 수학 공식 235

찾아보기 237

본문중에서

딥러닝이 세상의 주목을 받기 시작한 것은 “신경망이 이미지를 인식했다”라고 구글이 발표할 무렵부터입니다. 그후 DQN(Deep Q-Network)이라는 알고리즘이 비디오 게임 제어를 학습하고, 나아가 신경망을 이용한 머신러닝 시스템이 바둑 세계 챔피언을 이기는 등 놀라운 결과를 만들어 내고 있습니다. 그리고 이러한 딥러닝의 해설 기사에 반드시 등장하는 것이 바로 다수의 뉴런이 여러 층 결합된 ‘다층 신경망’을 도식화한 그림입니다. 이 신경망 내에서 대체 무슨 일이 일어나는 것인지, 딥러닝 알고리즘은 어떤 원리로 학습하는 것인지를 ‘어떻게 해서든 이해하고 싶다!’라고 느끼는 여러분이 바로 이 책의 대상 독자입니다.
_viii쪽

딥러닝은 ‘심층학습’이라고도 하며, 용어만 보면 뭔가 심오한 이론인 것처럼 느껴진다. 그러나 기본적으로는 앞서 그림 1 - 11과 같은 다층 신경망을 이용한 머신러닝에 지나지 않는다. 다만, 단순히 계층을 증가시켜 복잡화하는 것이 아니라 해결해야 할 문제에 맞게 각각의 노드에 특별한 역할을 부여하거나 노드 간의 연결 방식을 다양하게 연구한 것이다. 무조건 노드를 증가시켜 복잡화하는 것이 아니라 각 노드의 역할을 생각하면서 특정 의도를 갖고 구성한 신경망이라고 생각할 수 있다.
_13쪽

그렇다면 미니 배치 혹은 확률적 경사 하강법을 이용하는 이유는 무엇일까? 여기에는 크게 두 가지 이유가 있다. 첫 번째 이유는 트레이닝 세트 데이터가 대량으로 있을 경우에 1회당 계산량을 줄일 수 있다는 점이다. 일반적으로 특정 함수의 기울기 벡터를 구할 때는 계산 처리량이 많아진다. 텐서플로에서는 기울기 벡터 계산이 자동화되어 있어서 이용자가 계산 내용을 의식하지는 않지만, 그렇더라도 계산 처리량에는 주의가 필요하다. 트레이닝 세트에서 대량의 데이터를 투입하면 트레이닝 알고리즘의 계산이 상당히 느려지거나 대량의 메모리를 소비하므로 실용성이 떨어지게 된다.
_92쪽

특히, 복잡한 신경망을 이용할 경우 텐서보드로 오차 함수의 변화를 살펴보면 그림 3 - 25와 같이 오차 함수의 값이 계단 모양으로 변화하는 경우가 있다. 이것이 바로 극솟값 주위를 얼마간 돌아다닌 후에 갑자기 최솟값 방향으로 향하는 움직임에 해당한다. 극솟값을 갖는 위치가 여러 개 있을 경우에는 몇 단계에 걸쳐 오차 함수의 값이 변화하는 경우도 있다.
_135쪽

이번 장에서는 합성곱 필터와 풀링 계층을 2단으로 쌓은 CNN을 실제로 구성하고, 텐서플로를 이용해 최적화해서 어떤 결과가 나오는지를 확인해 보겠다. 여기서는 이를 위한 준비 과정으로 2단계 필터가 이미지 데이터에 대해 어떻게 작용하는지를 정리한다. 또한, 파라미터 최적화를 효율적으로 실시하는 데 필요한 CNN 특유의 테크닉에 관해 추가 설명한다. 구체적인 설명을 위해 첫 번째와 두 번째 단계의 합성곱 필터의 개수를 각각 32개와 64개로 가정한다.
_179쪽

저자소개

나카이 에츠지(中井 悅司) [저] 신작알림 SMS신청
생년월일 197104

나카이 에츠지는 1971년 4월 출생. 노벨 물리학상을 진정으로 꿈꾸며 이론물리학 연구에 몰두한 학생 시절, 대학 입시 교육에 열정을 기울인 예비학교 강사 시절을 지나 화려하게 변신해 외국계 벤더에서 리눅스 엔지니어를 생업으로 하기에 이르렀고, 미묘한 인연이 계속되어 유닉스/리눅스 서버와 인생을 같이 함.
그 후 리눅스 디스트리뷰터의 에반젤리스트를 거쳐서 현재는 미국계 IT 기업의 Cloud Solutions Architect로 활동함. 최근에는 머신 러닝을 비롯한 데이터 활용 기술의 기초를 세상에 알리기 위해 강연하거나 잡지 기고 및 서적 집필에도 주력하고 있음.

펼쳐보기
진명조 [역] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 40권 / 현재구매 가능도서 34권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용