간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (22,230원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (16,380원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (18,720원)
(최대할인 4만원 / 2만원 이상 결제)
Close

실체가 손에 잡히는 딥러닝, 기초부터 실전 프로그래밍 : 기초 수학과 파이썬 코드를 따라만 하면 신기하게 이해되는

원제 : はじめてのディ-プラ-ニング PYTHONで學ぶニュ-ラルネットワ-クとバックプロパゲ-ション
소득공제

2013년 9월 9일 이후 누적수치입니다.

공유하기

신경망, 역전파, CNN 구현

정가

26,000원

  • 23,400 (10%할인)

    1,300P (5%적립)

할인혜택
적립혜택
  • S-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 7/24(수) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서

  • 상품권

AD

책소개

딥러닝의 기초 지식과 수학부터
파이썬을 활용한 실전 프로그래밍 구현까지,
한 권으로 모든 것을 끝내는
딥러닝 입문자를 위한 최고의 책!

지금까지 나왔던 다른 어떤 책들과는 달리 딥러닝을 수식과 코드로서 매우 이해하기 쉽게 설명한다. 또한, 간결하고 이해하기 쉬운 예제 코드들이 하나 하나 모여 책의 마지막에 이르러 최종적으로 실전에서도 활용할 수 있는 완결된 딥러닝 코드를 완성함으로써, 독자가 성취감을 느끼며 끝까지 포기하지 않고 완독할 수 있다는 점은 이 책의 최대 강점이다. 이 책에서는 파이썬과 기초 수학부터 시작해 역전파(Backpropagation)와 컨볼루션 신경망(CNN)까지, 딥러닝의 필수 요소를 빠짐없이 자세하게 설명한다. 독자가 파이썬 프로그래밍을 직접 코딩하면서 차근차근 순서대로 공부해 나가다 보면 딥러닝의 기초를 완벽하게 습득할 수 있다.

출판사 서평

[이 책의 구성]

1장 딥러닝이란
머신러닝과 인공지능, 딥러닝과의 관계에 대해 소개하며 그동안 인공지능이 걸어온 길을 간략하게 설명합니다. 저자가 뇌과학에 상당히 관심이 깊어 딥러닝을 뇌과학의 관점에서 바라보며 딥러닝과 뇌의 유사성에 대한 다양하고 흥미로운 이야기를 풀어 놓습니다.

2장 파이썬 개요
파이썬 문법과 주피터 노트북에 대한 핵심만 소개합니다. 여기서 핵심이라는 의미는 책 전체에 걸쳐 구현되는 딥러닝 코드에 필요한 사항에만 집중한다는 의미입니다. 따라서 당연히 파이썬 전체를 소개하는 책에 비해서는 다루는 범위가 좁습니다만, 책에 나오는 프로그래밍 코드를 따라가는 데 필요한 내용은 모두 설명하므로 파이썬에 익숙하지 않은 독자라도 단기 속성 과정을 배우는 것처럼 효과적입니다.

3장 딥러닝에 필요한 수학
2장과 마찬가지로 딥러닝을 이해하고 구현하는 데 필요한 핵심적인 수학만 소개합니다. 선형대수와 미분을 다루는데, 고교 과정을 이수한 독자들이라면 무리 없이 따라갈 수 있습니다. 이 부분은 눈으로만 읽지 말고 수능 공부할 때처럼 백지에 연필을 긁적여가며 수식을 따라 써 볼 것을 권장합니다. 선형대수는 파이썬 넘파이(NumPy)를 이용한 실습 코드를 제공하는데, 초보자라면 이 부분도 소홀히 하지 말고 반복적으로 연습하기 바랍니다.

4장 신경망
딥러닝의 배경 이론인 신경망을 소개합니다. 신경망의 원리, 뉴런(노드)으로 구성된 층(layer)의 연결 관계, 순전파와 역전파, 가중치와 편향(바이어스), 활성화 함수 등의 핵심 내용을 친절한 코드와 함께 설명합니다. 특히 신경망에서 가중치와 편향의 역할과 영향력을 실제 코드로 보여주는 부분은 매우 인상적입니다.

5장 역전파
역전파(Backpropagation)는 신경망에서 출력 결과와 실제 값의 오차를 줄여나가는 과정입니다. 이 과정에서 필요한 경사 하강법과 아다그라드(Adagrad), 아담(Adam)과 같은 다양한 최적화 알고리즘을 수식과 코드를 이용해 설명합니다.

6장 딥러닝 구현
딥(deep)이라는 단어 그대로 신경망에 층을 많이 쌓아 데이터를 깊이 학습하는 것이 딥러닝입니다. 이렇게 층을 많이 쌓으면 신경망의 성능이 좋아지지만 과적합, 기울기 소실과 같은 여러 문제도 발생합니다. 이런 문제들을 유명한 붓꽃(Iris) 데이터를 통해 실제로 해결하는 과정을 코드로 제시하기 때문에 직관적으로 이해하기 쉽습니다.

7장 컨볼루션 신경망(CNN)
이 책의 최종 목표지점입니다. 딥러닝이 혜성처럼 등장한 것도 이미지 인식 대회였듯이 이미지 분류 작업에서 딥러닝은 탁월한 성과를 내고 있습니다. 7장에서는 앞에서 배웠던 모든 내용을 다 활용하고, 이미지 처리에 필요한 컨볼루션, 필터, 채널, 배치사이즈까지 고려한 실용적인 프로그래밍 코드를 완성하는 단계입니다. 다른 장(章)에 비해 분량이 가장 많아 학습하는 동안 지칠 수도 있지만 모든 내용을 끈기 있게 따라가면 손글씨 숫자 이미지를 거의 정확하게 분류하는 딥러닝의 마술을 스스로 구현하고 이해하게 되며 이때까지의 고생을 한번에 보상받을 수 있을 것입니다.

8장 그 밖의 딥러닝 기술
최신 딥러닝 기술을 소개합니다. 현재 딥러닝이 어느 수준까지 발전했고 딥러닝의 미래가 어떤 모습일지 짐작할 수 있는 내용으로 채워져 있습니다. 기본 수준을 넘어서 더 높은 단계로 도약하기 위해 필요한 안내서 같은 느낌으로 매우 유익한 내용입니다.

[이 책의 주요 특징]
- 딥러닝 프레임워크를 사용하지 않고 딥러닝의 알고리즘을 파이썬 프로그래밍 코드로 구현
- 딥러닝을 구현하는 데 꼭 필요한 만큼의 핵심 파이썬 문법
- 파이썬과 수치연산 라이브러리 넘파이(NumPy)를 이용한 프로그래밍 기초 지식
- 미분, 선형대수 등 신경망을 이해하는 데 필요한 기초 수학 이론과 수식 코딩 원리
- 단계별 실습을 통해 최종적으로 컨볼루션 신경망(CNN)을 구현하고 응용하는 목표에 도달
- 독자들이 스스로 응용하고 더 수준 높은 코드로 발전할 수 있는 완전한 파이썬 코드 제공
- 인간 뇌의 동작과 대응시킴으로써, 딥러닝의 작동 방식을 직관적으로 이해하기 쉽게 설명
- 최신 딥러닝의 발전 현황과 미래에 대한 구체적인 기술과 사례 소개

[이 책의 독자 대상]
- 머신러닝, 인공지능, 딥러닝에 대해 막연한 관심을 갖고 있지만 어떤 책으로 시작해야 좋을지 고민하는 학생 및 일반인, 타 분야의 개발자 등 이 분야에 입문하고 싶어하는 완전 초보자
- 딥러닝에 대한 대략적인 개념은 알고 있으나 딥러닝의 역사와 이론적 배경, 수학적 논리를 더 구체적이고 자세하게 이해하고 싶은 사람
- 딥러닝 알고리즘을 수식으로 명확하게 이해하고 이를 프로그래밍 코드로 구현하고 싶은데 이 모든 과정을 한 권의 책으로 해결하고 싶은 사람
- 실용적인 딥러닝 코드를 작성해 업무나 현장에서 바로 적용해보고 더 높은 수준의 딥러닝을 구현하고 싶은 개발자

[옮긴이의 글]
머신러닝과 인공지능에 대한 기본적인 배경 지식을 갖추고 딥러닝의 수학적인 논리 전개를 정확하게 이해하면서 이를 파이썬으로 구현하는 과정은 결코 쉽지 않습니다. 머신러닝과 딥러닝은 이론을 이해하는 것 못지 않게 직접 구현해보며 공부하는 것이 매우 중요하기 때문입니다.

그동안 딥러닝을 처음 접하는 독자들을 대상으로 하는 훌륭한 국내서와 번역서들이 많이 출간되었지만 이론과 실습의 균형이라는 측면에서 조금은 아쉬운 면이 있었습니다. 딥러닝을 구성하는 이론을 다양하게 설명하는 데 치중하는 느낌도 들고, 쉬운 이해를 강조하다 보니 실전 프로그래밍에서 필요한 요소들이 많이 생략된 경우도 있었습니다. 예제로 제시되는 파이썬 코드는 체계적으로 구조화되지 못해 독자들이 직접 전체 딥러닝 코드를 구현하려고 하면 여전히 막막하다는 생각이 드는 경우도 많았을 것이라고 생각합니다.

이러한 이유로 『실체가 손에 잡히는 딥러닝, 기초부터 실전 프로그래밍』은 기존 책들과는 뚜렷이 차별되는 매력과 장점이 돋보입니다. 저자가 서문에서 “직접 손을 움직여가며 공부할 수 있도록” 저술했다고 밝혔듯이, 독자가 파이썬 프로그래밍을 직접 코딩하면서 딥러닝을 명확하게 이해하고 익힐 수 있게 구성되었다는 점이 이 책만의 탁월한 장점입니다.

간결하고 이해하기 쉬운 예제 코드들이 하나 하나 모여 책의 마지막에 이르면 최종적으로는 실전에서도 활용할 수 있는 완결된 딥러닝 코드를 완성하게 됩니다. 이런 코드를 차근차근 따라하며 실습하다 보면 딥러닝을 직관적이고 구체적으로 이해할 수 있습니다. 이처럼 간결하고 이해하기 쉬운 예제 코드는 물론, 딥러닝의 배경 이론과 수학적인 전개 과정에 대한 설명도 불필요한 군더더기 없이 매우 깔끔합니다.

이 책에서는 독자가 최종 단계인 ‘컨볼루션 신경망(CNN)’(7장)을 스스로 구현할 수 있도록 아무런 딥러닝 프레임워크를 사용하지 않고 레고 블록을 쌓듯이 한 단계씩 기본적이고 핵심적인 내용을 세심하게 설명하며 이끌어갑니다.
모든 장(章)의 내용은 체계적이고도 유기적으로 서로 연결되어 있습니다. 앞에서 배운 사항을 뒤에서 적용하고, 지금 배우는 내용이 앞에서 배운 것과 어떻게 연결되는지, 어느 부분에서 배웠는지를 친절하게 상기시킵니다. 그렇게 그물처럼 촘촘히 연결된 책의 내용을 1장부터 끝까지 좇아가다보면 어느샌가 딥러닝의 실체가 눈앞에 선명하게 드러납니다. 한마디로 이론과 실습이 절묘하게 조화된 훌륭한 책이라고 생각합니다.

번역하는 내내, 이 책은 마치 결승선을 향해 망설임 없이 질주하는 경주마 같다고 느꼈습니다. 아마 독자들도 책을 읽는 동안 경주마 위에 올라타 장애물을 하나씩 뛰어넘어 마침내 목표점을 통과하는 것과 같은 짜릿한 성취감을 맛볼 수 있을 것이라고 생각하며, 또 그렇게 될 수 있기를 진심으로 응원합니다.

목차

[1장] 딥러닝이란
1.1 지능이란 무엇인가
1.2 인공지능(AI)
1.3 머신러닝
1.4 신경망
1.5 딥러닝 개요
1.6 인공지능과 딥러닝의 역사
__1.6.1 제1차 인공지능 전성기: 1950년대~1960년대
__1.6.2 제2차 인공지능 전성기: 1980년대~1990년대 후반
__1.6.3 제3차 인공지능 전성기: 2000년대 이후

[2장] 파이썬 개요
2.1 파이썬을 사용하는 이유
2.2 아나콘다와 주피터 노트북 활용
__2.2.1 아나콘다 다운로드
__2.2.2 아나콘다 설치
__2.2.3 주피터 노트북 실행
__2.2.4 주피터 노트북 사용
__2.2.5 노트북 종료
2.3 파이썬 문법
__2.3.1 변수와 변수형
__2.3.2 연산자
__2.3.3 리스트
__2.3.4 튜플
__2.3.5 딕셔너리
__2.3.6 if문
__2.3.7 for문
__2.3.8 while문
__2.3.9 내포
__2.3.10 함수
__2.3.11 변수의 범위
__2.3.12 클래스
2.4 넘파이
__2.4.1 넘파이 임포트
__2.4.2 넘파이 배열
__2.4.3 배열을 생성하는 다양한 함수
__2.4.4 reshape를 이용한 형태 변환
__2.4.5 배열 연산
__2.4.6 브로드캐스트
__2.4.7 원솟값에 접근
__2.4.8 슬라이싱
__2.4.9 축과 transpose 메소드
__2.4.10 넘파이의 함수
2.5 맷플롯립
__2.5.1 모듈 임포트
__2.5.2 그래프 생성
__2.5.3 그래프 디자인
__2.5.4 산포도 표시
__2.5.5 이미지 표시

[3장] 딥러닝을 위한 수학
3.1 수학 기호
__3.1.1 시그마(Σ)로 총합계 표시
__3.1.2 자연상수 e
__3.1.3 자연로그 log
3.2 선형대수
__3.2.1 스칼라
__3.2.2 벡터
__3.2.3 행렬
__3.2.4 텐서
__3.2.5 스칼라와 행렬의 곱셈
__3.2.6 각 원소 간의 곱셈
__3.2.7 행렬 곱
__3.2.8 행렬 전치
3.3 미분
__3.3.1 상미분
__3.3.2 미분법의 기본 공식
__3.3.3 연쇄법칙
__3.3.4 편미분
__3.3.5 전미분
__3.3.6 다변수의 연쇄법칙
3.4 정규분포

[4장] 신경망
4.1 신경세포 네트워크
4.2 신경세포의 모델화
4.3 뉴런의 네트워크화
4.4 회귀와 분류
__4.4.1 회귀
__4.4.2 분류
4.5 활성화 함수
__4.5.1 계단 함수
__4.5.2 시그모이드 함수
__4.5.3 tanh
__4.5.4 ReLU
__4.5.5 Leaky ReLU
__4.5.6 항등 함수
__4.5.7 소프트맥스 함수
4.6 신경망 구현
__4.6.1 단일 뉴런 구현
__4.6.2 가중치와 편향의 영향
__4.6.3 신경망 구현
__4.6.4 각 층의 구현
__4.6.5 신경망(회귀)
__4.6.6 신경망의 표현력
__4.6.7 신경망(분류)

[5장] 역전파
5.1 학습 규칙
__5.1.1 헵의 규칙
__5.1.2 델타 규칙
5.2 역전파란?
5.3 훈련 데이터와 테스트 데이터
5.4 손실 함수
__5.4.1 오차제곱합
__5.4.2 교차 엔트로피 오차
5.5 경사 하강법
__5.5.1 경사 하강법 개요
__5.5.2 기울기 구하는 방법
__5.5.3 출력층 기울기
__5.5.4 출력층에서 입력값 기울기
__5.5.5 은닉층 기울기
__5.5.6 기울기를 구하는 식 정리
__5.5.7 회귀 문제에서 기울기 구하는 방법
__5.5.8 분류 문제에서 기울기 구하는 방법
5.6 최적화 알고리즘
__5.6.1 최적화 알고리즘 개요
__5.6.2 확률적 경사 하강법
__5.6.3 모멘텀
__5.6.4 아다그라드
__5.6.5 RMSProp
__5.6.6 아담
5.7 배치 사이즈
__5.7.1 에포크와 배치
__5.7.2 배치 학습
__5.7.3 온라인 학습
__5.7.4 미니 배치 학습
5.8 행렬 연산
__5.8.1 행렬의 형식
__5.8.2 행렬을 이용한 순전파
__5.8.3 행렬을 이용한 역전파
5.9 회귀 문제에서의 역전파 구현
__5.9.1 회귀 예(sin 함수의 학습)
__5.9.2 출력층 구현
__5.9.3 은닉층 구현
__5.9.4 역전파 구현
__5.9.5 역전파 구현 전체 코드(회귀)
__5.9.6 실행 결과
5.10 분류 문제에서의 역전파 구현
__5.10.1 분류 사례(소속 영역 학습)
__5.10.2 각 층의 구현
__5.10.3 역전파 구현 전체 코드(분류)
__5.10.4 실행 결과

[6장] 딥러닝 구현
6.1 다층화에 따른 문제
__6.1.1 국소 최적해 함정
__6.1.2 과적합
__6.1.3 기울기 소실
__6.1.4 장기간의 학습 시간 문제
6.2 문제 해결 방안
__6.2.1 하이퍼 파라미터 최적화
__6.2.2 규제화
__6.2.3 가중치와 편향 초깃값
__6.2.4 조기 종료
__6.2.5 데이터 확장
__6.2.6 데이터 전처리
__6.2.7 드롭아웃
6.3 붓꽃 품종 분류
__6.3.1 붓꽃 데이터 세트
__6.3.2 훈련 데이터와 테스트 데이터
__6.3.3 신경망 구성
__6.3.4 학습에 관련된 각 설정
6.4 딥러닝 구현
__6.4.1 데이터 입력과 전처리
__6.4.2 각 층의 구현
__6.4.3 신경망 구축
__6.4.4 미니배치법 구현
__6.4.5 정답률 측정
__6.4.6 붓꽃 데이터 품종 분류를 위한 전체 코드
__6.4.7 실행 결과
__6.4.8 과적합 방지를 위한 대책
__6.4.9 아다그라드 구현
__6.4.10 드롭아웃 구현
__6.4.11 과적합 방지 대책의 결과
__6.4.12 품종 분류

[7장] 컨볼루션 신경망(CNN)
7.1 컨볼루션 신경망(CNN)의 개요
__7.1.1 시각 처리 체계
__7.1.2 CNN 구조
__7.1.3 컨볼루션 층
__7.1.4 풀링층
__7.1.5 전결합층
__7.1.6 패딩
__7.1.7 스트라이드
__7.1.8 CNN 학습
__7.1.9 변수 정리
7.2 im2col과 col2im
__7.2.1 im2col과 col2im의 개요
__7.2.2 im2col 알고리즘
__7.2.3 간단한 im2col 구현
__7.2.4 배치와 채널을 고려한 실전 im2col 코드
__7.2.5 col2im 알고리즘
__7.2.6 col2im 구현
7.3 컨볼루션층 구현
__7.3.1 구현 개요
__7.3.2 순전파
__7.3.3 역전파
7.4 풀링층 구현
__7.4.1 구현 과정 개요
__7.4.2 순전파
__7.4.3 역전파
7.5 전결합층 구현
7.6 컨볼루션 신경망 구현
__7.6.1 사용 데이터 세트
__7.6.2 구축할 신경망
__7.6.3 CNN 코드
__7.6.4 실행 결과
__7.6.5 컨볼루션층의 시각화
__7.6.6 컨볼루션층 효과
7.7 더 깊은 신경망
__7.7.1 신경망 구축
__7.2.2 실행 결과

[8장] 그 밖의 딥러닝 기술
8.1 순환 신경망(RNN)
__8.1.1 RNN의 개요
__8.1.2 LSTM
__8.1.3 GRU
8.2 자연어 처리
__8 2.1 형태소 분석
__8.2.2 단어 임베딩
8.3 생성 모델
__8.3.1 생성적 적대 신경망(GAN)
__8.3.2 VAE
8.4 강화학습
__8.4.1 강화학습 개요
__8.4.2 심층 강화학습
8.5 GPU 활용
__8.5.1 GPU란
__8.5.2 딥러닝에서 GPU 활용
8.6 딥러닝 프레임워크
8.7 딥러닝의 미래

관련이미지

저자소개

아즈마 유키나가 [저] 신작알림 SMS신청
생년월일 -

인간과 AI의 공생이 미션인 회사 SAI-Lab 주식회사의 대표이사로 AI 관련 교육과 연구개발에 종사하고 있다. 토호쿠대학 대학원 이학 연구과 수료. 이학 박사(물리학)이며, 관심 분야는 인공지능(AI), 복잡계, 뇌과학, 싱귤러리티 등이다. 현재 세계 최대의 교육 동영상 플랫폼 Udemy에서 다양한 AI 관련 강좌를 전개해 약 3만명을 지도하는 인기 강사이며, 엔지니어로서 VR, 게임, SNS 등 장르를 불문하고 여러 가지 앱을 개발했다.

아즈마 유키나가 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

최재원 [역] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

최재원 [역] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    10.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주)KG이니시스 구매안전서비스서비스 가입사실 확인

    (주)인터파크커머스는 회원님들의 안전거래를 위해 구매금액, 결제수단에 상관없이 (주)인터파크커머스를 통한 모든 거래에 대하여
    (주)KG이니시스가 제공하는 구매안전서비스를 적용하고 있습니다.

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용