간편결제, 신용카드 청구할인
PAYCO(페이코) 최대 5,000원 할인
(페이코 신규 회원 및 90일 휴면 회원 한정)
네이버페이 1%
(네이버페이 결제 시 적립)
북피니언 롯데카드 30% (13,860원)
(최대할인 3만원 / 3만원 이상 결제)
EBS 롯데카드 20% (15,840원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 NEW 우리V카드 10% (17,820원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 현대카드 7% (18,420원)
(최대할인 3만원 / 3만원 이상 결제)
Close

마스터 알고리즘 : 머신러닝은 우리의 미래를 어떻게 바꾸는가

인터파크추천 소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 511
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

22,000원

  • 19,800 (10%할인)

    1,100P (5%적립)

  • 구매

    15,400 (30%할인)

    770P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 출고완료 후 14일 이내 마이페이지에서 적립받기한 경우만 적립됩니다.
  • 추가혜택
    배송정보
    주문수량
    감소 증가
    • 북카트 담기
    • 바로구매
    • 매장픽업
    • 이벤트/기획전

    • 연관도서

    • 사은품(4)

    책소개

    인공지능과 무인자동차, HCI, 클라우드컴퓨팅, 사물인터넷까지 우리 삶을 변화시킬 가장 혁신적인 기술, 머신러닝의 모든 것!

    전 세계를 강타한 알파고 쇼크와 제4차 산업혁명의 이슈로 인해 인공지능과 머신러닝(기계학습)에 대한 관심의 규모는 날로 폭발하고 있다. 구글, 마이크로소프트, 페이스북, 아마존 등 거대 기업들은 앞 다투어 머신러닝에 많은 돈을 투자하고 있으며 최고의 머신러닝 전문가들을 중심으로 인하우스팀을 꾸리고 연구·개발에 전폭적인 지원을 아끼지 않는 등 분야 선점에 사활을 걸고 있다. 국내에서도 이런 정세에 맞춰 머신러닝은 무엇이며 왜 모든 글로벌 기업들이 그토록 ‘머신러닝’에 기대를 하고 있는지, 떠오르는 이 기술을 향후 어떻게 그리고 어떤 분야에 도입하고 활용해나가야 하는지에 대한 논의가 활발해지고 있다. 최고의 머신러닝 입문서로 평가받는 [마스터 알고리즘]은 데이터 과학 분야의 최고 영예인 SIGKDD 혁신상을 2년 연속 수상한 세계 최고의 머신러닝 분야 전문가 페드로 도밍고스가 쓴 책이다. 인공지능과 머신러닝의 탄생부터 어떻게 기계들이 스스로 학습할 수 있게 되었는지를 밝히고 나아가 이 기술이 우리의 미래를 얼마나 경이롭게 바꿔놓을지 생생하게 보여준다.

    출판사 서평

    내가 읽은 최고의 인공지능 입문서!
    -빌 게이츠

    아마존 컴퓨터/기술 1위!

    앞으로 5년 모든 산업을 지배할 기술,
    인공지능과 머신러닝에 대한 모든 것이 담겼다!

    구글, 페이스북, 아마존, 마이크로소프트, 바이두, 네이버, 삼성...
    왜 세계 최고의 기업들은 ‘머신러닝’에 미래를 거는가!


    머신러닝은 인공지능의 한 분야로 기계에 일일이 명령을 내리거나 프로그래밍하지 않아도, 기계 스스로 학습할 수 있는 능력을 부여하도록 연구하는 분야를 말한다. 불과 얼마 전까지만 하더라도 ‘기계가 스스로 학습한다’는 설정은 SF 영화 속에서나 가능한 일이라며 먼 미래에 접하게 될 기술이라 여겨왔다. 하지만 이미 머신러닝은 우리 삶에 깊숙이 자리하고 있다.

    우리가 한 기업에 입사 지원서를 제출하면, 그 이력서를 맨 처음 보는 것은 사람이 아니라 기계다. 머신러닝을 통해 괜찮은 이력서가 선별되는 것이다. 우리가 이사 갈 집을 구하고 있을 때, 함께 여가를 즐길만한 사람을 찾을 때, 맘에 드는 영화와 책을 고를 때도 머신러닝은 우리가 저울질했던 모든 정보를 학습하여 맘에 들어 할 만한 후보를 추천해준다. 나아가 우리의 신용카드 사용 내역을 추적하여 관찰하고 이메일과 메시지를 샅샅이 훑어 우리가 혹할 만한 광고를 보여준다. 이처럼 우리는 삶의 모든 단계에서 이미 머신러닝의 관여를 경험하고 있다. 그뿐만이 아니다. 머신러닝은 국가의 향방, 인간의 생존, 전쟁의 판도를 바꿀 만한 영향력도 가지고 있다. 머신러닝을 통해 유권자 성향을 상세하게 파악한 오바마가 롬니를 이기고 대통령이 된 것은 너무도 유명한 일이다. 지금 고속도로에서는 불의의 사고로 누군가 목숨을 잃는 일이 없도록 머신러닝 기술을 장착한 구글의 무인자동차가 주행 실험 중이며 미국 국방부는 머신러닝 기능을 탑재한 로봇으로 조직된 군대까지 계획하고 있다.

    구글, 페이스북, 아마존, IBM, 마이크로소프트, 바이두 등 세계 경제계를 주도하는 이러한 기업들이 인공지능과 머신러닝에 대규모 투자를 하며 미래를 준비하는 것은 앞으로 머신러닝이 산업과 사회, 인간의 모든 삶을 송두리째 바꿔놓을 것이라는 확신을 가졌기 때문이다.

    최고의 데이터 과학자가 전하는 머신러닝의 현재와 미래

    [마스터 알고리즘]의 저자 페드로 도밍고스는 머신러닝과 인공지능 그리고 철학계의 오랜 과제였던 ‘어떻게 논리와 확률을 통합할 것인가’에 관한 문제를 풀어낸 선구적 과학자로 뛰어난 명성을 지니고 있다. 120개가 넘는 세계 유수의 대학과 연구소, 컨퍼런스에 초대될 만큼 30년간의 그의 연구는 창조성과 기술적 깊이 면에서 인정받고 있는데 그것은 이 책에서도 빛을 발한다. 특히 과학과 기술, 사업, 정치, 전쟁 등 세상을 격변시킬 기술로 주목받는 머신러닝에 대해 그는 수학, 컴퓨터공학, 신경과학, 비즈니스 등을 아우르며 독자들이 쉽게 이해할 수 있도록 상세히 전달하고 있다.

    도밍고스는 여기에서 한 발 더 나아간다. 그는 단순히 머신러닝이 무엇인지 그 정체를 밝히는 데에 그치지 않고 인류를 다음 단계의 진화로 이끌어낼 만큼 파급력 있는 ‘새로운 머신러닝’의 탄생을 제시한다. 스팸메일의 분류, 아마존과 넷플릭스의 추천 콘텐츠, 투표자와 고객의 성향 분석 등 이미 사용되고 있는 다양한 머신러닝 기술에는 사실 그 쓰임과 분야에 따라 각기 다른 알고리즘이 사용되고 있다. 같은 추천시스템을 구축했지만 아마존과 넷플릭스의 머신러닝 알고리즘이 다른 것처럼 말이다. 이에 반해 도밍고스는 모든 분야와 지식을 아우르는, 범용적으로 사용할 수 있는 단 하나의 ‘마스터 알고리즘’을 만들어낼 수 있다는 대담한 주장을 한다. 그리고 마침내 ‘마스터 알고리즘’이 탄생되었을 때 ‘데이터’에서 세상의 모든 지식을 이끌어내는 유례없는 과학적 진보가 일어날 것이라 예견한다. 이렇듯 도밍고스는 ‘마스터 알고리즘’을 탄생시키는 과정에 독자들을 초대함으로써 새로운 머신러닝의 세계로 안내한다.

    스스로 학습하는 기계, 머신러닝은 우리의 세상을 어떻게 변화시킬 것인가!

    이 책은 머신러닝에 대해 크게 열 개의 장으로 나눠 소개하고 있다. [제1장 머신러닝의 혁명이 시작됐다]에서는 우리가 미처 인식하지 못하지만 생활 곳곳에 쓰이는 머신러닝의 현재를 조명한다. 선거와 전쟁의 판도를 바꾸고 전에 없던 속도로 과학을 진보시키는 일, 나아가 사람의 목숨을 구하기도 하는, 이제는 떼려야 뗄 수 없는 머신러닝의 중요성을 이야기한다. [제2장 마스터 알고리즘은 어떻게 탄생하는가]에서는 머신러닝의 설계, 그 바탕에 있는 머신러닝 알고리즘을 다섯 가지로 나눠 살펴본다. 그리고 다양한 머신러닝 알고리즘을 통합한, 단 하나의 ‘마스터 알고리즘’이 왜 필요한지 언급한다.

    제3장부터 제7장까지는 다섯 가지로 나눴던 머신러닝을 하나하나 상세하게 들여다본다. 머신러닝에는 여러 가지 접근 방법이 있는데, 이 책에서는 기호주의자, 연결주의자, 진화주의자, 베이즈주의자, 유추주의자, 이렇게 다섯 가지 종족으로 나눠 설명하고 있다. 기호주의자는 철학과 심리학, 논리학에서 아이디어를 얻어 머신러닝을 ‘연역법의 역’으로 실현하려 한다. 연결주의자는 두뇌를 분석하고 모방, 신경과학과 물리학에서 영감을 얻어 신경회로망이라는 접근 방법을 갖는다. 연결주의자의 방법은 최근 이슈가 되고 있는 딥 러닝의 근간이 되는 기술이다. 진화주의자는 유전학과 진화생물학에서 아이디어를 얻어 컴퓨터에서 진화를 모의시험하는 유전자 프로그래밍이라는 방법을 취한다. 베이즈주의자는 ‘학습’이 확률적 추론의 한 형태라고 믿고 통계학에 그 뿌리를 두고 있으며 유추주의자는 유사성 판단을 근거로 심리학과 수학적 최적화의 영향을 받는다.

    머신러닝의 다섯 종족을 다 살펴보고 나면 [제8장 선생님 없이 배우기]와 [제9장 마스터 알고리즘을 위한 마지막 퍼즐 조각]에서 스스로 학습하는 기계를 어떻게 실현할 수 있는지 앞서 살펴봤던 다섯 가지 머신러닝 알고리즘을 바탕으로 그 아이디어를 찾아본다. 마지막 [제10장 이것이 머신러닝이 펼치는 세상이다]에서는 모든 것을 아우르는 ‘마스터 알고리즘’이 탄생하면 어떤 미래가 도래하는지 이야기한다. 디지털 자아가 생기면 어떤 일이 벌어지는지, 마스터 알고리즘의 발견으로 전에 없던 과학적 진보가 이뤄지면 영화 [터미네이터]에 등장하는 악당 스카이넷이 탄생하는 것은 아닌지 머신러닝을 둘러싼 흥미진진한 미래 이야기가 전개 된다.

    현재를 알고 싶은 자, 미래를 앞서 가고 싶은 자 모두 읽어야 할 필독서!

    세바스찬 스런과 주데아 펄, 피터 노빅 등 컴퓨터공학 전문가들이 최고의 머신러닝 입문서라 극찬을 아끼지 않는 [마스터 알고리즘]은 오늘날과 같은 디지털 시대에 비즈니스를 하는 사람들에게 데이터 활용과 리스크 관리, 업무 자동화 등 다양한 측면에서 활용 가능한 아이디어를, 과학자나 기술자에게는 미래에 강력한 무기가 될 ‘머신러닝’이라는 새로운 과학적 세계관을, 머신러닝 전문가에게는 신선한 아이디어와 역사적으로 유용한 정보를, 빅 데이터와 머신러닝으로 인한 미래 사회의 변화를 궁금해하는 사람에게는 이 기술의 정체가 무엇이고 우리를 어디로 데려가는지에 대한 가장 분명한 청사진을 제시할 것이다.

    추천사

    컴퓨터과학의 궁극은 우리 인간처럼 경험을 통하여 스스로 학습할 수 있는 기계를 만들어내는 것이다. 머신러닝은 암 치료부터 인간형 로봇을 만드는 일까지 모든 분야에서 우리를 도울 것이다. 페드로 도밍고스는 이 기술이 미래를 얼마나 경이롭게 바꿔놓을지 생생하게 보여준다.
    - 월터 아이작슨 / [스티브 잡스] 저자

    가장 기다렸던 머신러닝 분야 최고의 입문서. 인공지능이 당신의 삶을 어떻게 바꿔놓을지 궁금하다면 이 책을 읽어라.
    - 세바스찬 스런 / 스탠퍼드대학 연구교수이자 구글 부사장, 자율주행자동차 개발자

    어떻게 기계들이 스스로 학습할 수 있는지 보여주는 이 책은 밝은 미래만 선언하는 다른 책들과 달리 다가오는 변화를 이해하는 데 필요한 실질적인 지식을 아낌없이 제공한다.
    - 피터 노빅 / 구글의 연구부서장, [인공지능] 저자

    페드로 도밍고스는 모든 지식을 데이터에서 ‘마스터 알고리즘’ 하나로 이끌어낼 수 있다는 대담한 주장을 펼치며 독자들을 멋진 머신러닝의 세계로 안내한다. 우리는 이 책에서 머신러닝에 관한 모든 것, 나아가 과학과 철학에 대해서도 배우게 될 것이다.
    - 던컨 와츠 / 마이크로소프트 리서치 책임연구원, [상식의 배반] 저자

    머신러닝은 우리의 삶을 바꿔놓을 가장 혁신적인 기술이 될 것이다. [마스터 알고리즘]은 다가올 미래를 대담하고 아름답게 묘사하는 동시에, 미래를 들여다보는 새로운 틀을 제공한다. 지금 이 시대에 당신이 읽어야 할 필독서다.
    - 조프리 무어 / 캐즘그룹 CEO, [벤처 마케팅] 저자

    이 책은 믿을 수 없을 정도로 중요하고 유용하다. 머신러닝은 이미 당신의 삶과 업무에서 매우 중요한 위치를 차지하며 앞으로 더 중요해질 것이다. 페드로 도밍고스는 머신러닝에 관하여 분명하고 이해하기 쉽게 설명하는 책을 써냈다.
    - 토머스 데이븐포트 / 밥손대학 교수, [분석으로 경쟁하라] [빅 데이터 a 워크] 저자

    머신러닝은 상업적으로는 예측분석법으로 알려졌으며 현재 세상을 바꾸고 있다. 확고하고 깊이가 있으며 영감을 주는 이 책은 기술 분야에 익숙하지 않은 독자들에게는 심오한 과학 개념을 소개하고 머신러닝 전문가들에게는 새롭고 깊이 있는 통찰로 이 분야의 가장 유망한 연구 방향을 제시하여 만족감을 선사한다. 이 책은 정말 희귀한 보석과 같다.
    - 에릭 시겔 /‘예측분석법 세계’ 설립자, [예측 분석이다] 저자

    머신러닝은 매력 있는 세계지만 그동안 외부인에게는 전혀 눈에 띄지 않은 분야였다. 페드로 도밍고스는 머신러닝의 다섯 종족이 주장하는 신비스러운 방식을 독자들에게 소개하고, 다섯 종족을 결합하여 우리 문명이 보아온 것 중 가장 강력한 기술을 창조하려는 그의 계획에 독자들을 초대한다.
    - 승현준 / 프린스턴대학 교수, [커넥톰, 뇌의 지도] 저자

    [마스터 알고리즘]은 머신러닝을 배우면서 교양을 쌓을 수 있는 즐거운 읽을거리다. 머신러닝을 공부하고 있는 학생들과 이제 막 시작하려는 학생들 그리고 머신러닝을 가르치려는 선생님들에게 나는 이 책을 추천하고 있다. 이 책에서 페드로 도밍고스는 머신러닝의 배경이 되는 방법론적인 착상들을 사용하여 정확하고 재미있는 과정을 성공적으로 제시했다. 뿐만 아니라 자기 자신을 모방하는 인간의 능력에 한계를 묻는 철학적인 질문들과 다양한 착상들을 엮어서 다채로운 태피스트리를 만드는 데에 성공했다. 현실을 알고 싶은 자, 미래를 알고 싶은 자 모두 꼭 읽어야 할 필독서다.
    - 주데아 펄 / 캘리포니아대학 컴퓨터과학 교수, 튜링상 수상자

    열정적이지만 지나치게 단순화하지 않은 머신러닝 입문서. 명료하며 유용한 정보를 계속 제공한다. 페드로 도밍고스는 재치와 비전, 학문을 바탕으로 과학자들이 컴퓨터가 스스로 학습하는 프로그램을 어떻게 창조하는지 설명한다. 독자들은 매력적인 통찰을 발견할 것이다.
    - [커커스 리뷰]

    페드로 도밍고스는 이 책에서 머신러닝 분야의 다섯 가지 주요 기술을 훌륭하게 정리해준다. 머신러닝의 내용은 묵직하지만 이런 주제를 꼭 필요한 시기에 재미있게 소개할 줄 아는 재주를 지녔다.
    - [이코노미스트]

    목차

    들어가는 말

    제1장 머신러닝의 혁명이 시작됐다
    머신러닝은 무엇인가
    최고의 기업들이 머신러닝을 채택하는 이유
    머신러닝이 과학을 혁신한다
    국가의 운명을 바꾼다
    지상 전쟁에 한 명, 가상 전쟁에 두 명
    우리는 어디로 향하는가

    제2장 마스터 알고리즘은 어떻게 탄생하는가
    신경과학에서
    진화론에서
    물리학에서
    통계학에서
    컴퓨터 과학에서
    머신러닝 vs 지식공학
    머신러닝 vs 인지 과학
    머신러닝 vs 머신러닝 실행자
    마스터 알고리즘은 당신에게 무엇을 주는가
    또 다른 만물 이론이 될 것인가
    본선에 진출하지 못하는 후보들
    머신러닝의 다섯 종족

    제3장 흄이 제기한 귀납의 문제 _기호주의자의 머신러닝
    데이트를 할 수 있을까, 없을까
    ‘세상에 공짜는 없다’라는 정리
    지식 펌프에 마중물 붓기
    세상을 다스리는 법
    무지와 환상 사이
    당신이 믿을 만한 정확도
    귀납법은 연역법의 역이다
    암 치료법 학습하기
    스무고개 놀이
    기호주의자의 믿음

    제4장 우리 두뇌는 어떻게 학습하는가 _연결주의자의 머신러닝
    퍼셉트론의 성장과 쇠퇴
    물리학자가 유리로 두뇌를 만들다
    세상에서 가장 중요한 곡선
    초공간에서 등산하기
    퍼셉트론의 복수
    세포의 완전한 모형
    두뇌 속으로 더 깊이 들어가기

    제5장 진화, 자연의 학습 알고리즘 _진화주의자의 머신러닝
    다윈의 알고리즘
    탐험과 개발 사이의 딜레마
    최적 프로그램의 생존
    성의 임무는 무엇인가
    자연에서 ‘학습’을 배우는 두 종족
    가장 빨리 학습하는 자가 승리한다

    제6장 베이즈 사제의 성당에서 _베이즈주의자의 머신러닝
    세상을 움직이는 정리
    모든 모형은 틀리지만 그중에는 유용한 모형도 있다
    예브게니 오네긴에서 시리까지
    모든 것은 연결되어 있다, 직접 연결되지는 않지만
    추론 문제
    베이즈 방식 학습하기
    마르코프가 증거를 평가한다
    논리와 확률이라는 불행한 짝

    제7장 당신을 닮은 것이 당신이다 _유추주의자의 머신러닝
    할 수 있으면 비슷한 점을 찾아봐
    차원의 저주
    평면 위의 뱀들
    사다리 오르기
    기호주의 vs 유추주의

    제8장 선생님 없이 배우기
    같은 종류끼리 모으기
    데이터의 모양 발견하기
    보상과 처벌 그리고 강화 학습
    자꾸 연습하면 아주 잘하게 된다
    연관 짓기 배우기

    제9장 마스터 알고리즘을 위한 마지막 퍼즐 조각
    여러 가지 학습 알고리즘을 어떻게 통합할 것인가
    궁극의 학습 알고리즘
    마르코프 논리 네트워크
    흄에서 가사 로봇까지
    지구 규모의 머신러닝
    의사가 지금 당신을 진찰할 것이다

    제10장 이것이 머신러닝이 펼치는 세상이다
    섹스, 거짓말 그리고 머신러닝
    디지털 거울
    디지털 모형들의 사교 생활
    공유할 것인가 공유하지 않을 것인가, 그리고 어디에서 어떻게?
    신경망이 내 일자리를 빼앗는다
    전쟁터에서 인간이 싸우지 않는다
    구글+마스터 알고리즘=스카이넷?
    진화, 두 번째 막이 시작됐다

    맺는말
    감사의 말
    감수의 글
    더 읽을거리
    찾아보기

    본문중에서

    이 책의 가장 큰 목표는 당신이 머신러닝의 비밀에 들어서게 하는 것이다. 차량의 엔진이 어떻게 작동하는가는 기술자와 정비공만 알면 된다. 반면 운전대를 돌리면 차량의 진행 방향이 바뀌고 브레이크를 밟으면 차량이 멈춘다는 것은 모든 운전자가 알아야 한다. 그런데 우리는 머신러닝을 사용하는 방법은커녕 머신러닝에서 운전대나 브레이크에 해당하는 게 무엇인지조차 모른다. 이 책은 당신에게 머신러닝을 효과적으로 사용하려면 알아야 하는 개략적인 지식, 개념 모형을 소개한다.
    (/ '들어가는 말' 중에서)

    머신러닝이 한 회사의 상품을 확실히 좋아하도록 할 수 있는 최선의 방법은 회사가 직접 머신러닝을 수행하는 것이다. 최선의 알고리즘과 최대의 데이터를 보유한 기업이 승리한다. 이로써 새로운 종류의 순환 고리가 생긴다. 가장 많은 고객을 보유한 회사가 가장 많은 데이터를 수집하고 가장 좋은 모형을 학습하고 가장 많은 신규 고객을 얻으며, 이러한 선순환이 계속 이어지는 것이다(경쟁사로서는 악순환이다). 구글에서 빙으로 옮기는 것은 윈도우에서 맥으로 옮기는 것보다 쉽겠지만 실제로 사람들이 옮기지 않는 까닭은 분명하다.
    (/ '제1장 머신러닝의 혁명이 시작됐다' 중에서)

    이렇게 적은 수의 머신러닝이 이렇게 많은 일을 한다면 ‘하나의 머신러닝 알고리즘이 모든 일을 할 수 있지 않을까?’라는 질문이 논리적으로 이어진다. 표현을 달리하면 ‘하나의 알고리즘이 데이터에서 배울 수 있는 모든 것을 다 배울 수 있을까?’가 된다. 이 책의 중심 가설이 여기에 있다. 세상의 모든 지식, 즉 과거, 현재, 미래의 모든 지식은 단 하나의 보편적 학습 알고리즘으로 데이터에서 얻어낼 수 있다. 나는 이 머신러닝을 마스터 알고리즘(master algorithm)이라 부른다. 만약 이런 알고리즘이 가능하다면, 이 알고리즘을 발명하는 일은 역사상 가장 위대한 과학의 성취가 될 것이다.
    (/ '제2장 마스터 알고리즘은 어떻게 탄생하는가' 중에서)

    신경망의 첫 번째 성공은 주식 시장을 예측하는 일이었다. 신경망은 방해되는 부분이 많이 섞여 있는 데이터에서 작은 비선형 특성들을 감지할 수 있기 때문에 선형 모형보다 더 좋은 성능을 보였으며 금융계에서 유행했다. 전형적인 투자 기금은 많은 주식 종목에 대해 개별적으로 신경망을 학습시켜 가장 유망한 주식 종목을 고르게 하고 인간 분석가가 그들 중에서 어느 종목에 투자할지를 정하게 한다. 하지만 일부 투자 기금은 모든 과정을 머신러닝에 맡겨 주식 종목을 사고 팔게 한다. 이런 기금이 정확히 얼마나 성과를 냈는지는 철저하게 비밀로 유지되지만, 헤지펀드가 머신러닝 전문가들을 계속 놀라운 속도로 휩쓸어가는 건 우연이 아닐 것이다.
    (/ '제4장 우리 두뇌는 어떻게 학습하는가' 중에서)

    한쪽만 보면 머신러닝은 데이터 수집과 인간의 기여 부분에 가려 암 박멸 연구 과제의 작은 부분에 불과해 보이기도 한다. 하지만 다른 쪽에서 보면 머신러닝은 전체 사업의 핵심이다. 머신러닝이 없으면 암에 대한 생물학 지식은 수천의 데이터베이스와 수백만 과학 저술, 작은 부분만 아는 의사들에게 흩어지고 우리에게는 암에 대한 파편화된 생물학 지식만 있을 것이다. 이런 지식을 일관성 있게 하나로 모으는 것은 아무리 똑똑하더라도 사람이 혼자서 할 수 있는 일이 아니다. 오직 머신러닝만 할 수 있다.
    (/ '제9장 마스터 알고리즘을 위한 마지막 퍼즐 조각' 중에서)

    여전히 우리는 결국 인간을 위한 직업은 없어질 것 아니냐고 의문을 제기할 수 있다. 내 생각은 아니다. 컴퓨터와 로봇이 모든 일을 인간보다 잘하는 날이 온다 하더라도(가까운 장래는 아니다) 적어도 우리 중 일부는 일자리를 보전할 것이다. 가벼운 대화까지 하며 완벽하게 인간을 흉내 내는 로봇 바텐더가 생길 테지만 고객들은 사람인 바텐더를 더 선호할 것이다. 내가 의미하는 것은 인간이 되는 경험을 하지 않고서는 이해할 수 없는 모든 것에 해당되는 인간성이다. 우리는 인간성이 점차 사라진다고 걱정하지만 다른 직업들이 자동화되면 잿더미에서 다시 일어날 것이다. 더 많은 일이 기계로 저렴하게 수행될수록 인간미 넘치는 사람이 기여하는 부분은 더 가치 있을 것이다.
    (/ '제10장 이것이 머신러닝이 펼치는 세상이다' 중에서)

    저자소개

    페드로 도밍고스(Pedro Domingos) [저] 신작알림 SMS신청 작가DB보기
    생년월일 -
    출생지 -
    출간도서 0종
    판매수 0권

    시애틀 워싱턴대학의 컴퓨터과학 및 공학 교수. 리스본의 IST(Instituto Superior Tecnico)대학에서 전기공학 및 컴퓨터과학 학사와 석사 학위를, 캘리포니아대학 어바인캠퍼스(UC Irvine)에서 정보 및 컴퓨터과학 박사 학위를 취득했다. 머신러닝 분야의 선구적인 전문가로 데이터과학 분야의 최고 영예인 SIGKDD 혁신상을 2년 연속 수상하며 세계적인 주목을 받았다. 이후에도 풀브라이트 펠로우십, 슬론 펠로우십, 미국국립과학재단의 CAREER상, IBM 교수상(Faculty Award)을 받으며 명성을 쌓아왔다.
    그의 주요 연구 분야는 머신러닝과 데이터 마이닝으로 컴퓨터가 인

    펼쳐보기
    생년월일 -
    출생지 -
    출간도서 0종
    판매수 0권

    서울시립대학교 전자공학과에서 학사, 석사 학위를 취득했다. LG전자에서 근무한 19년 동안 통신 장비와 휴대 전화를 개발하고 미국 주재원 생활을 경험했다. 번역가를 양성하는 글밥 아카데미에서 출판번역 과정을 수료 후, 현재 바른번역에서 정보통신과 과학기술 분야의 책을 중심으로 번역 활동을 하고 있다.

    최승진 [사진]
    생년월일 -
    출생지 -
    출간도서 0종
    판매수 0권

    포스텍 컴퓨터공학과 교수. 서울대학교 전기공학과를 졸업하고 미국 노터대임대학(University of NotreDame)에서 전자공학 박사과정을 밟으며 독립요소분석(independent component analysis)이라는 데이터분석법을 연구했다. 1997년 일본 이화학연구소에서 인공신경망과 뇌모사 컴퓨팅 연구를 하며, 자연스럽게 인공지능과 머신러닝에 발을 들여놓게 됐다. 머신러닝을 연구한 지 어느 덧 20년, 척박한 국내 이공계에 머신러닝의 기틀을 마련한 선구자로 현재 미래창조과학부 기계학습연구센터장을 역임하고 있다.

    언론사 추천 및 수상내역

    이 책과 내용이 비슷한 책 ? 내용 유사도란? 이 도서가 가진 내용을 분석하여 기준 도서와 얼마나 많이 유사한 콘텐츠를 많이 가지고 있는가에 대한 비율입니다.

      리뷰

      9.9 (총 0건)

      기대평

      작성시 유의사항

      평점
      0/200자
      등록하기

      기대평

      9.3

      교환/환불

      교환/환불 방법

      ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

      교환/환불 가능 기간

      고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

      교환/환불 비용

      고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

      교환/환불 불가사유

      반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
      배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

      소비자 피해보상

      소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
      교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

      기타

      도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

      배송안내

      • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

      • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

      • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

      • 배송비

      도서(중고도서 포함) 구매

      2,000원 (1만원이상 구매 시 무료배송)

      음반/DVD/잡지/만화 구매

      2,000원 (2만원이상 구매 시 무료배송)

      도서와 음반/DVD/잡지/만화/
      중고직배송상품을 함께 구매

      2,000원 (1만원이상 구매 시 무료배송)

      업체직접배송상품 구매

      업체별 상이한 배송비 적용