간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (29,930원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (22,050원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (25,200원)
(최대할인 4만원 / 2만원 이상 결제)
Close

그래프 머신러닝 : 머신러닝 알고리듬을 적용해 그래프 데이터 활용하기[초판]

원제 : Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 89
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

35,000원

  • 31,500 (10%할인)

    1,750P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 3/28(화) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(74)

  • 상품권

AD

책소개

파이썬으로 그래프 데이터를 다루기 위한 패키지인 NetworkX는 손쉽게 그래프를 생성, 조작, 분석하기 위한 매우 유용한 도구이다. NetworkX로 그래프 데이터를 이해하기 위한 기본적인 방법과 더불어 node2vec, edge2vec과 같은 다양한 머신러닝 알고리듬을 이용해 그래프 데이터를 활용하는 방법을 실생활에 적용가능한 예시와 함께 소개한다.

출판사 서평

◈ 이 책의 대상 독자 ◈
이 책은 데이터 포인트를 풀고, 위상(topology) 정보를 활용해 분석과 모델의 성능을 개선하려는 데이터 분석가, 그래프 개발자, 그래프 분석가, 그래프 전문가를 대상으로 한다. 머신러닝 기반 그래프 데이터베이스를 구축하려는 데이터 과학자와 머신러닝 개발자에게도 유용하다. 그래프 데이터베이스와 그래프 데이터에 대한 초급 수준의 지식을 가지고 있는 사람이 읽기에 적합한 책이다. 이 책의 내용을 최대한 활용하기 위해서는 파이썬 프로그래밍과 머신러닝에 대한 중급 수준의 실무 지식 또한 필요하다.

◈ 이 책의 구성 ◈

1장, '그래프 시작하기’에서는 NetworkX 파이썬 라이브러리를 사용해 그래프 이론의 기본 개념을 소개한다.
2장, ‘그래프 머신러닝’에서는 그래프 머신러닝과 그래프 임베딩 기술의 주요 개념을 소개한다.
3장, ‘그래프 비지도 학습’에서는 비지도 그래프 임베딩의 최신 방법을 다룬다.
4장, ‘그래프 지도 학습’에서는 지도 그래프 임베딩의 최신 방법을 다룬다.
5장, ‘그래프에서의 머신러닝 문제’에서는 그래프에서 가장 일반적인 머신러닝 작업을 소개한다.
6장, ‘소셜 네트워크 그래프’에서는 분석 소셜 네트워크 데이터에 머신러닝 알고리듬을 적용하는 방법을 소개한다.
7장, ‘그래프를 사용한 텍스트 분석 및 자연어 처리’에서는 자연어 처리 작업에 머신러닝 알고리듬을 적용하는 방법을 소개한다.
8장, ‘신용카드 거래에 대한 그래프 분석’에서는 신용카드 부정 거래 탐지에 머신러닝 알고리듬을 적용하는 방법을 소개한다.
9장, ‘데이터 드리븐 그래프 기반 응용 프로그램 구축’에서는 큰 그래프를 처리하는 데 유용한 몇 가지 기술을 소개한다.
10장, ‘그래프의 새로운 트랜드’에서는 그래프 머신러닝의 몇 가지 새로운 동향(알고리듬과 응용 프로그램)을 소개한다.

◈ 옮긴이의 말 ◈
처음 접하는 이들에게는 그래프 데이터가 어렵게 느껴질 수 있다. 하지만 그래프 데이터는 우리의 일상과 친숙해질 수 있는 데이터 형식이다. 사회는 복잡한 관계의 연속으로 구성되는데, 노드와 간선으로 표현되는 그래프 데이터는 이러한 관계의 표현을 가장 잘 나타낼 수 있는 데이터 형식이다. 관계 표현을 가장 쉽게 할 수 있다는 강점이 있어 최근에는 그래프 형식으로 데이터를 저장하는 데이터베이스 등이 각광받고 있다.
이 책은 그래프 데이터를 다루기 위한 아주 기본적인 것들로 시작해서, 실생활에 적용할 수 있는 예시를 통해 보다 쉬운 이해를 제공한다. 예시를 통해서 그래프 데이터를 다루는 기본기를 쌓고, 머신 러닝 알고리즘들을 활용해 고급 응용 스킬들을 배워볼 수 있다. 단순히 이론적인 설명에서 끝나는 것이 아니라 실제 서비스에 필요한 기본 지식들을 소개한다는 점에서 훌륭한 책이다. 물론 나와있는 내용만으로 그래프 머신 러닝 전문가가 될 수 있다고는 할 수 없을 것이다. 그러나 훌륭한 시작을 함께하기 위해 좋은 책이라고 생각한다.
이 책에서는 보다 복잡한 설명이나 심도 있는 이해가 필요한 부분에 참고할 만한 자료들에 대한 소개가 나와있다. 이러한 참고 자료들을 찾아보고 스스로 새로운 문제를 해결하기 위해 노력해보기를 꼭 권장한다. 이러한 노력이 인공지능 연구의 선도자가 되는 길이라고 생각한다.

추천사


그래프 머신러닝은 네트워크 데이터를 처리하고 예측, 모델링, 분석 작업에 사용할 수 있는 개체 간의 강력한 관계를 활용할 수 있는 새로운 도구를 제공한다.
그래프 이론과 그래프 머신러닝을 간단하게 소개하고, 그래프의 잠재력을 이해하는 방법을 배운다. 이어서 그래프 표현 학습을 위한 주요 머신러닝 모델, 즉 목적과 작동 방식, 다양한 지도 학습과 비지도 학습 응용 프로그램에서 구현하는 방법을 익힌다. 그런 다음 그래프 데이터의 잠재력을 최대한 활용하고자 데이터 처리부터 모델 학습 그리고 예측을 포함한 완전한 머신러닝 파이프라인을 구축한다. 계속해서 소셜 네트워크 데이터를 수집하고, 텍스트 분석과 금융 거래 시스템, 자연어 처리와 같은 실제 시나리오를 다룬다. 마지막으로 네트워크 정보를 저장하고, 질의하고 처리하기 위한 그래프 분석용 데이터 기반 응용 프로그램을 구축하고 확장하는 방법을 배운 다음, 그래프의 최신 동향을 알아본다.
이 책을 통해 그래프 이론의 필수 개념과 머신러닝 응용 프로그램을 성공적으로 구축하는 데 사용되는 모든 알고리듬과 기술을 배울 수 있을 것이다.

목차

1부. 그래프 머신러닝 소개
2부.
1장. 그래프 시작하기
__기술적 필요 사항
__networkx로 그래프 이해하기
____그래프의 종류
____그래프 표현
__그래프 플로팅
____networkx
____Gephi
__그래프 속성
____통합 측정 지표
____분리 측정 지표
____중심성 측정 지표
____탄력성 측정 지표
__벤치마크 및 저장소
____간단한 그래프의 예
____그래프 생성 모델
____벤치마크
__큰 그래프 다루기
__요약

2장. 그래프 머신러닝
__기술적 필요 사항
__그래프 머신러닝 이해하기
____머신러닝의 기본 원리
____그래프 머신러닝의 이점
__일반화된 그래프 임베딩 문제
__그래프 임베딩 머신러닝 알고리듬의 분류
____임베딩 알고리듬의 분류
__요약

2부. 그래프에서의 머신러닝

3장. 비지도 그래프 학습
__기술적 필요 사항
__비지도 그래프 임베딩 로드맵
__얕은 임베딩 방법
____행렬 분해
____그래프 분해
____고차 근접 보존 임베딩
____전역 구조 정보를 통한 그래프 표현
____skip-gram
____DeepWalk
____Node2Vec
____Edge2Vec
____Graph2Vec
__오토인코더
____텐서플로와 케라스-강력한 조합
____첫 번째 오토인코더
____노이즈 제거 오토인코더
____그래프 오토인코더
__그래프 신경망
____GNN의 변형
____스펙트럼 그래프 합성곱
____공간 그래프 합성곱
____예제로 보는 그래프 합성곱
__요약

4장. 지도 그래프 학습
__기술적 필요 사항
__지도 그래프 임베딩 로드맵
__특징 기반 방법
__얕은 임베딩 방법
____라벨 전파 알고리듬
____라벨 확산 알고리듬
__그래프 정규화 방법
____매니폴드 정규화 및 준지도 임베딩
____신경 그래프 학습
____Planetoid
__Graph CNN
____GCN을 이용한 그래프 분류
____GraphSAGE를 이용한 노드 분류
__요약

5장. 그래프에서의 머신러닝 문제
__기술적 필요 사항
__그래프에서 누락된 링크 예측
____유사성 기반 방법
____임베딩 기반 방법
__커뮤니티와 같은 의미 있는 구조 감지
____임베딩 기반 커뮤니티 감지
____스펙트럼 방법 및 행렬 분해
____확률 모델
____비용 함수 최소화
__그래프 유사성 및 그래프 매칭 감지
____그래프 임베딩 기반 방법
____그래프 커널 기반 방법
____GNN 기반 방법
____응용
__요약

3부. 그래프 머신러닝의 고급 응용

6장. 소셜 네트워크 그래프
__기술적 필요 사항
__데이터셋 개요
____데이터셋 다운로드
____networkx로 데이터셋 불러오기
__네트워크 토폴로지 및 커뮤니티 감지
____토폴로지 개요
____노드 중심성
____커뮤니티 감지
__지도 및 비지도 임베딩
____작업 준비
____node2vec 기반 링크 예측
____GraphSAGE 기반 링크 예측
____링크 예측을 위한 수작업 특징
____결과 요약
__요약

7장. 그래프를 이용한 텍스트 분석 및 자연어 처리
__기술적 필요 사항
__데이터셋 개요
__자연어 처리에서 사용되는 주요 개념 및 도구 이해
__문서 모음에서 그래프 만들기
____지식 그래프
____이분 문서/개체 그래프
__문서 주제 분류기 구축
____얕은 학습 방법
____그래프 신경망
__요약

8장. 신용카드 거래에 대한 그래프 분석
__기술적 필요 사항
__데이터셋 개요
____데이터셋 불러오기 및 networkx 그래프 구축
__네트워크 토폴로지 및 커뮤니티 감지
____네트워크 토폴로지
____커뮤니티 감지
__사기 탐지를 위한 지도 및 비지도 임베딩
____사기 거래 식별에 대한 지도 학습 접근 방식
____사기 거래 식별에 대한 비지도 학습 접근 방식
__요약

9장. 데이터 드리븐 그래프 기반 응용 프로그램 구축
__기술적 필요 사항
__람다 아키텍처 개요
__그래프 기반 응용 프로그램을 위한 람다 아키텍처
____그래프 처리 엔진
____그래프 쿼리 레이어
____Neo4j와 GraphX 선택
__요약

10장. 그래프의 새로운 트렌드
__그래프의 데이터 증대에 대해 알아보기
____샘플링 전략
____데이터 증강 기술 살펴보기
__토폴로지 데이터 분석에 대해 배우기
____토폴로지 머신러닝
__새로운 영역에 그래프 이론 적용하기
____그래프 머신러닝 및 신경 과학
____그래프 이론 및 화학 및 생물학
____그래프 머신러닝 및 컴퓨터 비전
__추천 시스템
__요약

저자소개

클라우디오 스타밀레 [저] 신작알림 SMS신청
생년월일 -

2013년 9월 이탈리아 칼라브리아 대학(University of Calabria)에서 컴퓨터 공학 석사 학위를 받았으며, 2017년 9월 벨기에 뢰번 가톨릭 대학(KU Leuven) 및 프랑스 끌로드 베흐노리용 1 대학(Universite Claude Bernard Lyon 1)에서 공동 박사 학위를 받았다. 석박사 학위 과정 동안 생물 의학 분야를 전공하면서 인공지능, 그래프 이론, 머신러닝에 관해 탄탄한 배경 지식을 쌓았다. 현재 최상위 고객이 데이터 기반 전략을 구현하고 인공지능 기반 솔루션을 구축해 효율성을 높이고 새로운 비즈니스 모델을 수행하도록 지원하는 컨설팅 회사인 CGnal의 선임 데이터 과

펼쳐보기
알도 마르줄로 [저] 신작알림 SMS신청
생년월일 -

2016년 9월 칼라브리아 대학에서 컴퓨터과학 석사 학위를 받았다. 알고리듬 설계와 그래프 이론, 그리고 머신러닝을 포함한 여러 분야에서 견고한 배경 지식을 쌓았다. 2020년 1월 칼라브리아 대학과 끌로드 베흐노 리용 1(프랑스 리용) 대학에서 「Deep Learning and Graph Th eory for Brain Connectivity Analysis in Multiple Sclerosis(다발성 경화증 뇌 연결성 분석을 위한 딥러닝과 그래프 이론)」이라는 논문으로 공동 박사 학위를 받았다. 알도는 현재 칼라브리아 대학의 박사후 연구원으로 여러 국제기관과 협력하고 있다.

엔리코 듀세비오 [저] 신작알림 SMS신청
생년월일 -

현재 최고 수준의 고객이 데이터 기반 전략을 구현하고 인공지능 기반 솔루션을 구축하는 것을 지원하는 컨설팅 회사인 CGnal의 최고 운영 책임자다. 학문적, 산업적 맥락에서 10년 이상 고성능 시설과 대규모 컴퓨팅 센터를 사용해 데이터와 대규모 시뮬레이션을 연구해 왔다. 케임브리지 대학(University of Cambridge), 토리노 대학(University of Turin), 스톡홀름 왕립기술원(KTH) 등 최상위권 대학과 협력해 박사학위를 취득했다. 또한 2014년 토리노 폴리테크닉(Politecnico di Torino)의 항공 우주 공학 학사 및 석사 학위를 받았다.

장기식 [역] 신작알림 SMS신청
생년월일 -

경찰청 사이버안전국 디지털포렌식센터에서 디지털 포렌식 업무를 담당했다. 이후 경찰대학 치안정책연구소에서 데이터 분석과 머신러닝 기술을 접한 이후, 데이터 분석을 기반으로 한 머신러닝 기술을 연구했으며, 이 경험을 바탕으로 현재 아이브스 AI LAB에서 데이터 분석과 딥러닝 기반 영상 보안 솔루션 개발 및 연구를 책임지고 있다. 번역서로는 『보안을 위한 효율적인 방법 PKI』(인포북, 2003)와 『EnCase 컴퓨터 포렌식』(에이콘, 2015), 『인텔리전스 기반 사고 대응』(에이콘, 2019), 『적대적 머신러닝』(에이콘, 2020)이 있다.

이 상품의 시리즈

(총 76권 / 현재구매 가능도서 75권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    0.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용