간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (42,750원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (31,500원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (36,000원)
(최대할인 4만원 / 2만원 이상 결제)
Close

Pandas를 이용한 데이터 분석 실습 : 라이브러리로 다양한 실제 데이터 분석[초판]

원제 : Hands-On Data Analysis with Pandas - Second Edition
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 142
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

50,000원

  • 45,000 (10%할인)

    2,500P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 3/28(화) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(74)

  • 상품권

AD

책소개

pandas는 파이썬에서 데이터 과학을 위한 강력하고 인기 있는 라이브러리다. 이 책은 주식 시장과 모의 해킹 시도, 기상 동향, 지진, 와인, 천문학 데이터 등 실제 데이터에 pandas를 이용한 데이터 분석 실습을 제공한다. pandas는 표 형식의 데이터를 효율적으로 다룰 수 있는 기능을 제공해 데이터 랭글링(data wrangling)과 시각화를 쉽게 할 수 있다. 데이터 분석 방법을 배운 다음에 다양한 응용 프로그램을 살펴본다. 파이썬 패키지를 구축한 다음, 데이터 시각화와 데이터 랭클링, 그리고 머신러닝을 위해 널리 사용되는 Matplotlib와 Seaborn, 넘파이(NumPy), Scikit-learn과 같은 추가 라이브러리를 사용해 주가 분석, 이상 탐지, 회귀, 군집화, 분류 문제에 도전한다. 이 책을 읽으면 파이썬으로 여러분만의 데이터 과학 프로젝트를 수행할 준비가 돼 있을 것이다.

출판사 서평

◈ 이 책에서 다루는 내용 ◈

◆ 데이터 분석가와 과학자가 데이터를 수집하고 분석하는 방법 이해
◆ 파이썬으로 데이터 분석과 데이터 랭글링
◆ 여러 출처의 데이터를 결합, 그룹화 그리고 집계
◆ pandas와 matplotlib, seaborn으로 데이터 시각화
◆ 머신러닝 알고리듬으로 패턴을 식별, 예측
◆ 파이썬 데이터 과학 라이브러리를 사용해 실제 데이터세트 분석
◆ pandas로 일반적인 데이터 표현과 분석 문제 해결
◆ 분석 코드를 재사용할 수 있도록 파이썬 스크립트와 모듈, 그리고 패키지 생성

◈ 이 책의 대상 독자 ◈

이 책은 데이터 과학을 프로젝트에 적용하고 데이터 과학자와 협업하거나 소프트웨어 엔지니어와 함께 머신러닝 제품 코드 작업을 진행하고자 파이썬으로 데이터 과학을 배우려는 다양한 수준의 경험을 가진 사람들을 대상으로 한다. 다음과 같은 경험이 있다면 이 책을 최대로 활용할 수 있을 것이다.
R이나 SAS 또는 MATLAB과 같은 다른 언어로 데이터 과학을 경험하고 여러분의 작업을 파이썬으로 전환하고자 pandas를 배우려는 사람, 그리고 파이썬 경험이 있으며 파이썬을 사용해 데이터 과학을 배우려는 사람 모두가 읽기에 적합하다.

◈ 이 책의 구성 ◈

1장, ‘데이터 분석 소개 데이터 분석과 통계학의 기초’에서는 파이썬에서의 데이터 작업과 주피터 노트북(Jupyter Notebook) 사용을 위한 환경 설정 과정을 안내한다.
2장, ‘pandas 데이터프레임으로 작업하기’에서는 pandas 라이브러리를 소개하고 데이터프레임으로 작업하기 위한 기본 지식을 설명한다.
3장, ‘pandas로 데이터 랭글링하기’에서는 데이터 조작(data manipulation) 과정을 설명하고 API로 통한 데이터 수집 방법을 소개하며 pandas로 데이터 정제(data cleaning)와 재구성(reshaping)을 안내한다.
4장, ‘pandas로 데이터프레임 집계하기’에서는 데이터프레임에 질의(query)하고 병합하는 방법과 데이터프레임에서 이동 평균과 집계를 포함해 복잡한 계산을 하는 방법, 시계열 데이터를 효율적으로 다루는 방법을 다룬다.
5장, ‘pandas와 matplotlib로 데이터 시각화하기’에서는 파이썬에서 matplotlib 라이브러리를 사용해 데이터를 시각화하는 방법과 pandas 객체에서 직접 시각화하는 방법을 소개한다.
6장, ‘seaborn과 사용자 정의 기술로 그림 그리기’에서는 seaborn 라이브러리를 사용해 긴 형식의 데이터를 시각화하는 방법과 발표에 사용할 수 있도록 시각화를 사용자에게 맞게 수정할 수 있는 도구를 소개하면서 데이터 시각화에 관해 설명을 이어간다.
7장, ‘금융 분석-비트코인과 주식시장’에서는 주가 분석을 위한 파이썬 패키지를 만들고자 1장부터 6장까지 배운 모든 내용을 다룬다.
8장, ‘규칙 기반 이상 탐지’에서는 데이터를 시뮬레이션한 다음, 이상 탐지를 위한 규칙 기반 전략을 사용해서 웹 사이트에 인증을 시도하려는 해커를 잡고자 1장부터 6장까지 배운 모든 내용을 다룬다.
9장, ‘파이썬으로 머신러닝 시작하기’에서는 머신러닝과 Scikit-learn 라이브러리를 사용해 머신러닝 모델을 구축하는 방법을 소개한다.
10장, ‘예측 더 잘하기-모델 최적화’에서는 머신러닝 모델의 성능을 조정하고 개선하기 위한 전략을 알아본다.

◈ 옮긴이의 말 ◈

이 책을 번역하면서 데이터 분석을 처음 공부했을 때가 생각났다. 학교에서 배웠던 기본 통계학을 다시 공부하면서 관련 내용을 코드로 구현하고, 그 과정 및 결과를 그래프로 시각화하면서 개념을 다시 잡으면서 고생했었다.

이런 책이 있었더라면 많은 사람이 역자처럼 고생하지 않고 쉽게 데이터 분석에 입문하지 않을까 생각하면서 번역을 시작했다. 그러나 번역을 다 끝내고 편집된 원고를 다시 읽어보면서 이 책에 담겨있는 많은 내용을 제대로 번역하지 못한 것 같아 다소 아쉬운 생각이 든다. 기본적인 내용이 많이 담겨있지만, 더 필요한 통계학과 코딩 기본 지식을 더 보충했더라면 더 좋은 책이 되었을 것으로 생각한다. 하지만 이는 번역서로의 범위를 넘어설 뿐만 아니라 데이터 분석 입문을 위한 이 책의 목적에도 부합하지 않는다.

저자도 강조했듯이 역자들 또한 데이터 분석에서 가장 중요하다고 생각하는 것은 ‘왜 데이터 분석해야 하는가?’이다. 많은 데이터 분석 관련 정보는 데이터를 읽고, 시각화를 위해 전처리하고 시각화를 하는 과정에만 집중하고 있다. 그러나 데이터 분석은 데이터를 시각화하는 것이 목적이 아니라는 것을 재차 강조하고 싶다. 데이터 분석은 데이터분석가를 위한 것이 아니라 기업활동에서 의사결정권자에게 필요한 정보를 데이터분석가가 데이터를 가공해 전달하기 위한 도구라는 것을 명심해야 한다. 단순히 데이터를 시각화하는 것에 사로잡히지 말고, 우리가 하려는 ‘목적’을 정확히 알고, 목적 달성에 필요한 데이터를 수집해야 하며, ‘목적’을 위해 데이터를 어떻게 가공하고 시각화해야만 의사결정권자가 필요한 정보를 한눈에 알아보고 이해할 수 있는가는 고민해야 한다. 이것이 역자들이 생각하는 데이터 분석의 목적이다.

이 책을 읽고 실습하면서 필요한 배경지식은 이 책에 각 장의 보충 자료 외에 통계학 등의 관련 서적이나 MOOC 등의 강의를 통해 습득하길 바란다. 또한 데이터 시각화를 위해서는 동적으로 시각화를 할 수 있도록 Tableau나 Plotly 등의 오픈소스 시각화 도구를 활용하는 방법을 추가로 익히길 바란다.

추천사

켄지(Ken Jee)(유튜버이자 스카우트 컨설팅 그룹(Scouts Consulting Group)의 데이터 과학 책임자)
교육자들은 자신이 선호하는 매체를 사용해 가르치는 경향이 있다. 개인적으로 경력을 시작할 즈음의 나는 비디오 콘텐츠에 매료됐다. 온라인 콘텐츠를 제작하면서 자주 듣는 질문 중 하나는 놀랍게도 ‘데이터 과학을 시작하는 사람들에게 추천할 만한 책이 있나요?’라는 질문이었다.
온라인에 좋은 자료가 많이 있는데도 책을 찾는 것에 처음에는 당황했으나 이 책을 읽은 후에는 데이터 과학 학습을 위한 책에 대한 내 인식이 바뀌었다.
이 책에서 가장 마음에 들었던 것은 책의 구성이었다. 적절한 양의 정보를 제때에 제공해 여러분이 자연스럽게 진도를 나갈 수 있도록 하고 있다. 본서를 통해 통계와 관련 개념에 관한 기초 지식부터 시작해 실습을 바탕으로 이론을 배울 수 있을 것이다.
기초를 배우고 나면 이 책의 핵심인 pandas를 만나게 된다. 저자는 (이전에 여러분들이 사용했던 것과 같은 오래된 데이터가 아닌) 최신 실제 데이터를 사용해 모듈(module)에 생명을 불어넣는다. 나 역시 이 책을 통해 몇 가지 기술을 배웠다.
이 책의 후반부에서는 pandas의 강력한 기능을 바탕으로 무엇을 할 수 있는지 배운다. 저자는 머신러닝의 고급 개념도 자세히 소개하지만 지나치게 기술적인 전문 용어를 사용하지 않으면서 진도를 나가는 데 필요한 정보를 충분히 제공한다.
나는 저자와 대화하면서 이 책에 대한 그녀의 자부심을 느낄 수 있었다. 이 책은 데이터 과학의 도구를 배우려는 사람들에게 좋은 자료이자 저자 자신의 지식을 확고히 하면서 본인의 영역을 확장할 수 있는 방법이기도 하다. 여러분은 커뮤니티뿐만 아니라 자신의 학습을 위해 창조하는 사람들로부터 배우고 싶을 것이다. 내재적 동기를 가진 사람들은 추가로 수정하거나 표현을 정확하게 하고자 더 많은 노력을 한다.
여러분도 나처럼 이 책에서 많은 것을 배울 수 있길 바란다. 위에서 내게 ‘데이터 과학을 시작하는 사람들에게 추천할 만한 책이 있나요?’ 라는 질문을 한 분들에 대한 대답은 바로 이 책이다.


데이터 과학은 종종 프로그래밍 기술과 통계적 기법(statistical know-how) 그리고 특정 분야의 지식(domain knowledge)이 서로 어우러지는 학제간 분야로 묘사된다. 데이터 과학은 빠르게 우리 사회에서 가장 주목받는 분야 중의 하나가 됐으며, 데이터로 작업하는 방법을 아는 것은 오늘날의 직장생활에서 꼭 필요한 것이 됐다. 산업이나 역할, 또는 프로젝트에 상관없이 데이터 기술은 수요가 많으며 데이터 분석을 배우는 것이 영향력을 행사할 수 있는 중요한 요소다. 데이터 과학 분야는 영역 전반에 걸쳐 다른 많은 측면을 다룬다. 데이터 분석가(data analyst)는 비즈니스 인사이트(business insight)를 도출하는 데 더 중점을 두지만, 데이터 과학자는 기업의 문제에 머신러닝 기술을 적용하는 데 더 중점을 둔다. 데이터 엔지니어는 데이터 분석가와 데이터 과학자가 사용하는 데이터 파이프라인 설계와 구축, 유지 관리에 집중한다. 머신러닝 엔지니어 는 데이터 엔지니어와 마찬가지로 데이터 과학자의 많은 기술을 사용하는 능숙한 소프트웨어 엔지니어다. 데이터 과학은 많은 분야를 아우르지만 모든 분야에 있어서 데이터 분석은 기본 구성 요소 다. 이 책은 여러분이 어느 분야에서든 시작할 수 있는 기술을 제공한다.
데이터 과학의 전통적인 기술은 데이터베이스, API와 같이 다양한 출처에서 데이터를 수집하고 처리하는 방법을 포함한다. 파이썬은 데이터를 수집하고 처리할 뿐만 아니라 데이터 제품의 생산 품질을 구축할 수 있는 수단을 제공해 데이터 과학 분야에서 인기 있는 언어 중의 하나다. 또한 오픈 소스로 다른 사람이 작성한 라이브러리를 활용해 일반적인 데이터 작업이나 문제를 해결하기 위한 데이터 과학을 시작하는 데 적합하다.

목차

1부. pandas 시작하기
1장 데이터 분석 소개
__1장 교재
__데이터 분석 기초
____데이터 수집
____데이터 랭글링
____탐색적 데이터 분석
____결론 도출
__통계 기초
____표본 추출
____기술통계학
____추론통계학
__가상 환경 설정하기
____가상 환경
____필수 파이썬 패키지 설치하기
____왜 pandas인가?
____주피터 노트북
__요약
__연습 문제
__참고 자료
2장. pandas DataFrame으로 작업하기
__2장 교재
__pandas 데이터 구조
____시리즈
____인덱스
____DataFrame
__pandas DataFrame 만들기
____파이썬 객체로 DataFrame 만들기
____파일로 DataFrame 만들기
____데이터베이스로 DataFrame 만들기
____API에서 DataFrame 만들기
__DataFrame 객체 확인하기
____데이터 검사하기
____데이터 설명 및 요약하기
__데이터의 부분집합 선택하기
____열 선택하기
____슬라이싱
____인덱싱
____필터링
__데이터 추가하고 제거하기
____새로운 데이터 만들기
____원하지 않는 데이터 삭제하기
__요약
__연습 문제
__참고 자료
__데이터
2부. pandas로 데이터분석하기
3장. pandas로 데이터 랭글링하기
__3장 교재
__데이터 랭글링 이해하기
____데이터 정제
____데이터 변환
____데이터 강화
__기온 데이터를 찾고 수집하고자 API 사용하기
__데이터 정제
____열 이름 바꾸기
____유형 변환
____데이터 재정렬, 재인덱싱, 정렬
__데이터 재구성하기
____DataFrame 전치
____DataFrame 피보팅
____DataFrame 멜팅
__중복, 결측, 유효하지 않은 데이터 다루기
____문제가 있는 데이터 찾기
____문제 완화하기
__요약
__연습 문제
__참고 자료
4장. pandas DataFrame 집계하기
__4장 교재
__DataFrame을 데이터베이스처럼 작업하기
____DataFrame 질의하기
____DataFrame 병합하기
__데이터 강화를 위한 DataFrame 연산
____산술과 통계
____데이터 이산화
____함수 적용하기
____윈도우 계산
__파이프
__데이터 집계
____DataFrame 요약하기
____그룹으로 집계하기
____피봇 테이블과 교차표
__시계열 데이터로 작업하기
____시간을 기준으로 선택하고 필터링하기
____시차 데이터 이동하기
____차분 데이터
____재표본추출
____시계열 데이터 병합하기
__요약
__연습 문제
__참고 자료
5장. pandas와 matplotlib를 사용한 데이터 시각화
__5장 교재
__matplotlib 소개
____기초
____그림 구성 요소
____추가 옵션
__pandas로 그림 그리기
____시간의 경과에 따른 변화
____변수 간의 관계
____분포
____개수와 빈도수
__pandas.plotting 모듈
____산포행렬
____시차 그림
____자기상관 그림
____붓스트랩 그림
__요약
__연습 문제
__참고 자료
6장. seaborn과 사용자 정의 기술로 그림 그리기
__6장 교재
__seaborn으로 고급 그림 그리기
____범주형 데이터
____상관관계와 히트맵
____회귀그림
____패시팅
__matplotlib로 그림 형식 지정하기
____제목과 축 이름
____범례
____축 형식 지정하기
__시각화 사용자 정의하기
____참조선 추가하기
____음영 영역
____주석
____색상
____질감
__요약
__연습 문제
__참고 자료
3부. pandas를 이용한 실제 분석
7장. 금융 분석-비트코인과 주식 시장
__7장 교재
__파이썬 패키지 만들기
____패키지 구조
____stock_analysis 패키지 개요
____UML 다이어그램
__금융 데이터 수집하기
____StockReader 클래스
____야후! 금융에서 과거 데이터 수집하기
__탐색적 데이터 분석
____Visualizer 클래스 패밀리
____주가 시각화하기
____다중 자산 시각화하기
__금융 상품의 기술적 분석
____StockAnalyzer 클래스
____AssetGroupAnalyzer 클래스
____자산 비교하기
__과거 데이터를 사용한 수익률 모델링
____StockModeler 클래스
____시계열 분해
____ARIMA
____statsmodels의 선형회귀
____모델 비교
__요약
__연습 문제
__참고 자료
8장. 규칙 기반 비정상 행위 탐지
__8장 교재
__로그인 시도 시뮬레이션
____가정
____login_attempt_simulator 패키지
____터미널에서 시뮬레이션하기
__탐색적 데이터 분석
__규칙 기반 이상 탐지 구현
____백분율 차
____튜키 울타리
____Z-점수
____성능 평가
__요약
__연습 문제
__참고 자료
4부. scikit-learn을 이용한 머신러닝 소개
9장. 파이썬에서 머신러닝 시작하기
__9장 교재
__머신러닝 개요
____머신러닝의 종류
____일반적인 작업
____파이썬으로 머신러닝하기
__탐색적 데이터 분석
____레드 와인 품질 데이터
__화이트 와인과 레드 와인의 화학 성분 데이터
____행성과 외계 행성 데이터
__데이터 전처리
____학습 데이터와 평가 데이터
____데이터 척도화 및 중심화
____데이터 부호화
____대치
____추가 변환기
____데이터 파이프라인 구축
__군집화
____k-평균
____군집 결과 평가
__회귀
____선형회귀
____회귀 결과 분석
__분류
____로지스틱 회귀
____분류 결과 평가
__요약
__연습 문제
__참고 자료
10장. 예측 더 잘하기-모델 최적화
__10장 교재
__격자검색을 통한 초매개변수 튜닝
__특성 공학
____상호작용 항과 다항식 특성
____차원축소
____특성 합집합
____특성 중요도
__앙상블 방법
____확률숲
____경사부스팅
____투표
__분류 예측 신뢰도 검사
__계급불균형 해결
____과소표본추출
____과대표본추출
__정칙화
__요약
__연습 문제
__참고 자료
11장. 머신러닝 기반 비정상 행위 탐지
__11장 교재
__시뮬레이션 로그인 시도 데이터 탐색
__비정상 행위 탐지에 비지도학습 모델 활용
____고립숲
____국소특이점인자
____모델 비교
__지도학습 비정상 행위 탐지 구현
____기준 설정
____로지스틱 회귀
__피드백 되돌림과 온라인학습 통합
____PartialFitPipeline 하위 클래스 만들기
____확률적 경사하강 분류기
__요약
__연습 문제
__참고 자료
5부. 추가 자료
12장. 나아갈 길
__데이터 출처
____파이썬 패키지
____데이터 검색
____API
____웹사이트
__데이터 작업 연습
__파이썬 연습
__요약
__연습 문제
__참고 자료
해답
부록

관련이미지

저자소개

스테파니 몰린 [저] 신작알림 SMS신청
생년월일 -

뉴욕 블룸버그 LP의 데이터 과학자이자 소프트웨어 엔지니어로서 정보보호 분야에서 이상 탐지(anomaly detection)와 데이터 수집을 위한 도구 개발, 지식 공유와 같이 어려운 문제를 담당하고 있다. AdTech와 FinTech 산업에서 데이터 과학, 이상 탐지 솔루션 설계, 머신러닝에 R과 파이썬을 활용하는 데 많은 경험이 있으며, 컬럼비아 대학의 후 재단 공과 및 응용과학 대학(Fu Foundation School of Engineering and Applied Science)에서 운용 연구(OR, Operations Research)로 석사 학위를 받았으며 경제학과 기업가 정신 및 혁신(entrepreneurship and innovation)

펼쳐보기
장기식 [역] 신작알림 SMS신청
생년월일 -

경찰청 사이버안전국 디지털포렌식센터에서 디지털 포렌식 업무를 담당했다. 이후 경찰대학 치안정책연구소에서 데이터 분석과 머신러닝 기술을 접한 이후, 데이터 분석을 기반으로 한 머신러닝 기술을 연구했으며, 이 경험을 바탕으로 현재 아이브스 AI LAB에서 데이터 분석과 딥러닝 기반 영상 보안 솔루션 개발 및 연구를 책임지고 있다. 번역서로는 『보안을 위한 효율적인 방법 PKI』(인포북, 2003)와 『EnCase 컴퓨터 포렌식』(에이콘, 2015), 『인텔리전스 기반 사고 대응』(에이콘, 2019), 『적대적 머신러닝』(에이콘, 2020)이 있다.

김경환 [역] 신작알림 SMS신청
생년월일 -

역서로 『Pandas를 이용한 데이터 분석 실습』 등이 있다.

노용환 [역] 신작알림 SMS신청
생년월일 -

역서로 『Pandas를 이용한 데이터 분석 실습』 등이 있다.

이 상품의 시리즈

(총 76권 / 현재구매 가능도서 75권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    0.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용