간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 6/1~6/30 기간 중 1회)
삼성카드 6% (25,380원)
(삼성카드 6% 청구할인)
인터파크 롯데카드 5% (25,650원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (18,900원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (21,600원)
(최대할인 4만원 / 2만원 이상 결제)
Close

데이콘 경진대회 1등 솔루션 : 다양한 분야의 데이터를 분석하면서 발견하는 데이터 인사이트와 분석 노하우

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 804
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

30,000원

  • 27,000 (10%할인)

    1,500P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 출고완료 후 14일 이내 마이페이지에서 적립받기한 경우만 적립됩니다.
추가혜택
배송정보
주문수량
감소 증가
  • 북카트 담기
  • 바로구매
  • 매장픽업
  • 이벤트/기획전

  • 연관도서(52)

  • 사은품(4)

출판사 서평

다양한 분야의 데이터 분석을 통한 데이터 인사이트와 분석 노하우를 소개합니다

금융, 스포츠, 기상, 지구과학 등 다양한 데이터를 가지고 문제를 해결하는 데이콘(https://www.dacon.io/) 경진대회 중 다섯 대회에서 우승한 팀의 솔루션을 소개합니다. 문제 소개부터 시작해, 도메인 분석, 환경 구축, 데이터 탐색, 전처리, 모델 구축과 검증, 앙상블(ensemble)에 이르는 데이터 분석의 전 과정을 꼼꼼하게 살펴볼 수 있습니다.

◎ KBO 타자 OPS 예측(김민수1906): 프로야구 선수의 내년 성적(출루율, 장타율) 예측
◎ 반도체 박막 두께 분석(Context_KKP): 파이토치를 활용한 반사율 스펙트럼 분석
◎ 퇴근시간 버스 승차인원 예측(제주감귤): 교통카드, 날씨, 금융 데이터와 지오코딩 활용
◎ 상점 신용카드 매출 예측(DB분석가): 파이썬과 R 언어, 자기회귀누적이동평균(ARIMA) 모델을 활용
◎ KBO 외국인 투수 스카우팅 최적화(TNT): 팬그래프와 KBO 데이터를 활용해 투수의 제구력을 평가

목차

▣ 01장: KBO 타자 OPS 예측
1.1 문제 정의
__1.1.1 경진대회 소개
__1.1.2 평가척도
__1.1.3 도메인 조사
__1.1.4 문제 해결을 위한 접근 방식 소개
__1.1.5 분석환경 구축
1.2 탐색적 데이터 분석
__1.2.1 프리시즌 데이터 분석
__1.2.2 정규시즌 데이터 분석
__1.2.3 일별 데이터 분석
__1.2.4 탐색적 데이터 분석 요약
1.3 데이터 전처리
__1.3.1 결측치 처리 및 데이터 오류 처리
__1.3.2 규정 타수 정의
__1.3.3 시간변수
____시간 반영 함수 정의와 변수 생성
____변수 선택 & 시간 범위
__1.3.4 추가 변수 생성
__1.3.5 데이터 사후 처리
__1.3.6 SLG 데이터 전처리
1.4 모델 구축과 검증
__1.4.1 데이터 분할
__1.4.2 모델 선택
____릿지와 라쏘
____랜덤 포레스트
____XGBoost(eXtra Gradient Boost)
____알고리즘별 성능 비교
__1.4.3 결과 해석 및 평가
____랜덤 포레스트
____라쏘와 릿지 회귀 모델
1.5 성능 향상을 위한 방법
__1.5.1 앙상블
__1.5.2 단순화된 모델 생성
__1.5.3 테스트 데이터 정제
____OBP
____SLG
__1.5.4 반발계수의 변화
1.6 정리

▣ 02장: 반도체 박막 두께 분석
2.1 문제 정의
__2.1.1 경진대회 소개
__2.1.2 평가척도
__2.1.3 문제 해결을 위한 접근 방식
__2.1.4 분석환경 구축
2.2 탐색적 데이터 분석
__2.2.1 데이터 분석 및 통계
____연속형, 수치형 데이터
____데이터 기초 통계
____데이터 시각화
2.3 데이터 전처리
__2.3.1 결측치 처리
__2.3.2 데이터 파이프라인
__2.3.3 커스텀 데이터 클래스
2.4 모델 구축과 검증
__2.4.1 모델 탐색
____회귀 문제에 대한 머신러닝 모델
____회귀 문제에 대한 신경망 모델
__2.4.2 신경망 모델 구축
____모델 소개
____베이스라인 모델 및 대표 모델
____모델 레이어 구성 살펴보기
__2.4.3 모델 검증
2.5 성능 향상을 위한 방법
__2.5.1 정규화 기법 적용하기
__2.5.2 추가 실험하기
____옵티마이저 및 스케줄러 조정
____하이퍼파라미터(배치 크기, 은닉층 노드 개수, 레이어 구성 조정)
__2.5.3 앙상블
2.6 정리

▣ 03장: 퇴근시간 버스 승차인원 예측
3.1 문제 정의
__3.1.1 경진대회 소개
__3.1.2 평가척도
__3.1.3 문제 해결을 위한 접근 방식 소개
____주의할 점
__3.1.4 분석환경 구축
____데이콘 데이터 내려받기
____깃허브에서 데이터 내려받기
____라이브러리 설치
3.2 탐색적 데이터 분석
____데이터 경로 설정
__3.2.1 데이터 설명
____train.csv와 test.csv
____bus_bts.csv
____jeju_financial_life_data.csv
____weather.csv
____rain.csv
__3.2.2 데이터 시각화를 통한 탐색적 데이터 분석
____타깃 변수 분포 확인하기
____단일 변수에 따른 타깃 변수의 변화
____요일에 따른 퇴근시간 평균 탑승객 수
____버스 종류에 따른 탑승객 수
____일별 출퇴근 시간 탑승객 수
3.3 데이터 전처리
__3.3.1 내부 데이터를 통한 변수 생성
____탐색적 데이터 분석을 통한 변수
____도메인 조사를 통한 변수
____시간대를 활용한 변수
____bus_bts를 활용한 변수
____좌표를 활용한 변수
__3.3.2 외부 데이터를 통한 변수 생성
____날씨를 활용한 변수
____jeju_financial_life_data를 활용한 변수
__3.3.3 라벨 인코딩과 원핫 인코딩 변수
____라벨 인코딩 변수
____원핫 인코딩 변수
__3.3.4 전체 변수 정리
3.4 모델 구축과 검증
__3.4.1 머신러닝 모델
____배깅 방식 앙상블 모델
____부스팅 방식 앙상블 모델
__3.4.2 모델 검증
____교차검증
__3.4.3 변수 선택
____최종 데이터 구축
____그리드 탐색
____임의탐색
__3.4.5 최종 모델 구축
____주 모델 선택
____최종 모델 구축
3.5 성능 향상을 위한 방법
__3.5.1 submission 간 앙상블
____결괏값 간 상관계수 확인
____여러 가지 앙상블 기법
3.6 정리

▣ 04장: 상점 신용카드 매출 예측
4.1 문제 정의
__4.1.1 경진대회 소개
__4.1.2 평가척도
__4.1.3 대회 관련 사전 조사
__4.1.4 문제 해결을 위한 접근 방식 소개
____데이터 살펴보기
____데이터의 노이즈
____분석 방향
__4.1.5 분석환경 구축
____아나콘다 가상환경 구축
____주피터 노트북 설치
____rpy2(파이썬에서 R 객체 사용)
____pmdarima(시계열 분석)
____statsmodels(통계 분석)
____seaborn, tqdm 패키지 설치
____주피터 노트북에 가상환경 커널 추가하기
4.2 데이터 전처리
__4.2.1 노이즈 제거
__4.2.2 다운 샘플링
__4.2.3 날짜 지정 범위 생성과 시리즈 객체 변환
4.3 탐색적 데이터 분석
__4.3.1 상점별 매출 특성
____계절성이 있는 상점
____추세가 있는 상점
____휴업 중인 상점
__4.3.2 시계열 데이터의 정상성
____ADF-Test
4.4 모델 구축과 검증
__4.4.1 파이썬에서 R 시계열 패키지 forecast를 통한 모델링
__4.4.2 시계열 모델 선택과 검증
____자기회귀누적이동평균 모델
____지수평활법
____STL 분해를 적용한 지수평활법
4.5 성능 향상을 위한 방법
__4.5.1 상점 매출액의 로그 정규화
__4.5.2 파이썬에서 R 시계열 패키지 forecastHybrid를 통한 앙상블

▣ 05장: KBO 외국인 투수 스카우팅 최적화
5.1 문제 정의
__5.1.1 경진대회 소개
__5.1.2 평가척도
__5.1.3 도메인 조사
__5.1.4 문제 해결을 위한 접근 방식 소개
__5.1.5 분석환경 구축
5.2 탐색적 데이터 분석
__5.2.1 KBO/팬그래프 데이터에 기록된 야구 지표 분석
__5.2.2 스탯캐스트 데이터에 기록된 야구 지표 분석
5.3 데이터 전처리
__5.3.1 가설을 확인하기 위한 투수 집단 선정하기
__5.3.2 유효한 데이터 선정하기
5.4 모델 구축과 검증
__5.4.1 선형회귀분석
__5.4.2 아웃 확률 추정하기
5.5 성능 향상을 위한 방법
__5.5.1 볼 배합 지표
__5.5.2 배럴 타구 허용 비율
5.6 정리

▣ 06장: 부록
A.1 아나콘다 다운로드와 설치
__A.1.1 아나콘다 다운로드
__A.1.2 아나콘다 설치
A.2 파이썬 패키지 확인과 추가 설치
__A.2.1 아나콘다 프롬프트 실행
__A.2.2 기본 설치된 패키지 확인
__A.2.3 파이썬 패키지 추가 설치
A.3 장별 실습에 필요한 패키지를 일괄 설치
__A.3.1 requirements.txt를 사용해 패키지를 일괄 설치
__A.3.2 environment.yml로 가상 환경을 구성하고 패키지를 일괄 설치
A.4 주피터 노트북
__A.4.1 주피터 노트북 시작
__A.4.2 주피터 노트북 사용
__A.4.3 주피터 노트북 종료

관련이미지

저자소개

김민수1906 팀 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

일산 지역 데이터 분석 스터디 모임에서 경진대회 참가를 위해 만들어진 팀이다. 연세대학교 정보대학원 비즈니스 빅데이터 트랙 석사과정 김민수, 경북대학교 통계학과 서동진으로 구성하고 있다. 머신러닝, 딥러닝 등을 함께 공부하며 여러 경진대회에 참가하고 있다.

Context_KKP 팀 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

딥러닝 모델은 흔히 ‘블랙박스’라고 표현이 되는데, ‘입력에 대한 블랙박스의 출력은 어떻게 나오는 것일까?’에 대한 궁금증을 해소하기 위해 맥락(context)을 공부하자는 의미로 팀 이름을 정했다. 서로 처음 알게 되었을 때는 각자 직장인, 대학원생으로 직업이 달랐지만 지금은 3명 모두 대학원생으로 학업에 집중하며 간간히 대회에도 참여하고 있다.

DB분석가 팀 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

데이터 사이언스에 흥미를 느끼던 경영학도 2명이 실전 빅데이터를 경험하며 성장하기 위해 결성한 팀이다. 상점 신용카드 매출 예측 경진대회에서 1등을 했으며 데이콘 공공데이터 활용 온도 추정 AI경진대회에서 6위에 올랐다.

제주감귤 팀 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

국민대학교 빅데이터경영통계전공 학생들로 이뤄진 팀이다. 통계적 지식과 경영학적 인사이트를 기반으로 데이터 분석을 하고 있다. 데이터 분석을 통해 더 나은 세상을 만들고자 한다.

생년월일 -
출생지 -
출간도서 0종
판매수 0권

성균관대학교 교내 데이터 분석 학회인 TNT(Train and Test)의 회원으로 구성된 팀이다. 각기 다른 전공생끼리 모여 여러 도메인의 문제 해결을 위해 데이터 분석 및 인공지능 기법을 적용하는 것을 목표로 한다.

이 상품의 시리즈

(총 71권 / 현재구매 가능도서 53권)

펼쳐보기

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    교환/환불

    교환/환불 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

    교환/환불 가능 기간

    고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

    교환/환불 비용

    고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

    교환/환불 불가사유

    반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
    배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

    소비자 피해보상

    소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
    교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

    기타

    도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

    배송안내

    • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

    • 배송비

    도서(중고도서 포함) 구매

    2,000원 (1만원이상 구매 시 무료배송)

    음반/DVD/잡지/만화 구매

    2,000원 (2만원이상 구매 시 무료배송)

    도서와 음반/DVD/잡지/만화/
    중고직배송상품을 함께 구매

    2,000원 (1만원이상 구매 시 무료배송)

    업체직접배송상품 구매

    업체별 상이한 배송비 적용