간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 12/1~12/31 기간 중 1회)
인터파크 롯데카드 5% (23,090원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (17,010원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (19,440원)
(최대할인 4만원 / 2만원 이상 결제)
Close

카카오 아레나 데이터 경진대회 1등 노하우 : 상품 카테고리 분류와 브런치 글 개인화추천으로 배우는 데이터 분석 실무

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 412
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

27,000원

  • 24,300 (10%할인)

    1,350P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(46)

  • 상품권

AD

책소개

카카오 아레나 데이터 경진대회 1등 노하우를 공개합니다!

카카오 아레나 데이터 경진 대회 1회, 2회 대회의 문제와 데이터, 우승 솔루션을 상세히 설명하고 있습니다. 단순한 머신러닝과 데이터 분석에 대한 설명을 넘어, 실무에서 풀고자 하는 문제를 이해하고, 서비스로부터 수집된 공개 데이터셋과 실제 대회 우승 솔루션을 통해 실질적인 머신러닝 문제를 푸는 과정을 이해하고 경험할 수 있습니다.

★ 이 책에서 배우는 내용 ★
◎ 카카오의 브런치와 쇼핑하우 서비스에서 데이터를 활용하는 방법
◎ 데이터 분석 경진대회에 참가하는 방법부터 우승자의 필승 비법까지
◎ 자연어 처리를 위한 LSTM 및 최신 트랜스포머 인코더, 이미지 인코더, 카테고리 분류의 원리와 활용법
◎ 카카오는 당신이 무슨 글을 읽을지 이미 알고 있다! 콘텐츠 기반 필터링과 협업 필터링의 원리와 실전 코드
◎ 여러 모델의 예측 결과를 결합하는 앙상블 기법

목차

▣ 01장: 1회 대회 살펴보기
1.1 대회 설명
__1.1.1 왜 상품 카테고리를 분류하는가?
__1.1.2 대회 내용 설명
__1.1.3 대회 참여 현황
1.2 대회 평가 척도
1.3 데이터셋 훑어보기
__1.3.1 데이터셋 설명
____카테고리 매핑 정보
____train 데이터셋
____dev 데이터셋
____test 데이터셋
__1.3.2 대회 데이터 탐색
____train 데이터(train.chunk.01~09) 상품 수
____상품 카테고리 분류 분포
____상품명에 담긴 정보
____사용 빈도가 높은 단어
____이미지 피처 시각화
____데이터 탐색 요약
1.4 베이스라인 모델 실행
__1.4.1 실행 코드 가져오기
__1.4.2 필요 패키지 설치하기
__1.4.3 대회 데이터 저장
__1.4.4 학습 데이터와 평가 데이터 나누기
__1.4.5 베이스라인 모델 학습하기
__1.4.6 베이스라인 모델로 결과 생성하기
__1.4.7 결과 데이터 채점하기
__1.4.8 결과 제출하기

▣ 02장: 쇼핑몰 상품 카테고리 분류 1등 솔루션
2.1 접근 방법
__2.1.1 문제 파악
____상세 설명 탭 읽기
____채점 탭 읽기
__2.1.2 데이터 구성 확인
__2.1.3 머신러닝 파이프라인 구현
____데이터 전처리(Data Preprocessing)
____학습(Training)
____추론(Inference)
____리더보드 제출
____성능 개선 방법
2.2 실행 환경 구축
__2.2.1 아나콘다 설치하기
____아나콘다 실행하기
____작업 디렉터리 생성하기
__2.2.2 파이토치 설치하기
__2.2.3 git 설치하기
__2.2.4 주피터 노트북 실행하기
2.3 솔루션 코드 실행
__2.3.1 실행 준비
____솔루션 코드 다운로드
____대회 데이터 다운로드
____필요한 패키지 설치
__2.3.2 데이터 전처리
__2.3.3 학습
____배치 사이즈(batch size), 워커(worker) 개수 등의 변경
____기본 검증 방법
____k-폴드 교차검증
____5-폴드의 각 데이터 그룹 학습시키기
__2.3.4 추론
____k-폴드 평균 앙상블(k-fold average ensemble)
____2.3.5 리더보드에 제출
2.4 솔루션 코드 분석
__2.4.1 데이터 전처리
____데이터프레임으로 변환
____피처 엔지니어링
____전처리된 데이터를 저장
____img_feat 데이터 전처리 및 저장
__2.4.2 학습
____모델 아키텍처 선정 및 구현
____모델 학습 진행
__2.4.3 추론
____inference.py

▣ 03장: 2회 대회 살펴보기
3.1 대회 설명
__3.1.1 브런치의 글 추천은 어떻게 이루어지는가?
____유사글 추천 모델
____개인화 맞춤 추천 모델
____추천할 만한 글을 찾는 타깃팅 조건
____내가 좋아할 만한 글을 찾는 랭킹 과정
__3.1.2 대회 내용 설명
__3.1.3 대회 참여 현황
3.2 대회 평가 척도
3.3 데이터셋 훑어보기
__3.3.1 데이터셋 설명
____사용자가 본 글 정보
____글의 메타데이터
____글 본문 정보
____사용자 정보
____매거진 정보
____예측할 사용자 정보
__3.3.2 대회 데이터 탐색
____브런치에 등록된 글 현황
____브런치 글의 소비 데이터 현황
____브런치 글의 등록일 이후 경과일에 따른 소비 현황
____위클리 매거진의 주기성
____신규 사용자 vs. 단골 사용자
____사용자 구독 데이터 현황
____데이터 탐색 요약
3.4 베이스라인 추천 모델 실행
__3.4.1 실행 코드 가져오기
__3.4.2 필요 패키지 설치하기
__3.4.3 학습 데이터와 평가 데이터 나누기
__3.4.4 베이스라인 추천 모델로 결과 생성하기
__3.4.5 추천 결과 채점하기
__3.4.6 dev.users 사용자 결과 생성하기
__3.4.7 결과 제출하기

▣ 04장: 글 추천 1등 솔루션 따라하기
4.1 2회 대회의 문제 이해
__4.1.1 문제 개요
____과거 기록의 기간과 예측할 소비의 기간
____예측 대상 사용자와 글
____성능 평가와 공개 리더보드
__4.1.2 성능 평가 지표 및 수상 기준
__4.1.3 브런치 서비스 이해
____방문 이유와 유입 경로
____세션 특성
____서비스 이용 패턴
__4.1.4 프로그래밍 언어 및 외부 라이브러리
__4.1.5 예제 코드 확인하기
4.2 2회 대회의 데이터 이해
__4.2.1 글 조회 데이터
____데이터 전처리
____데이터 분석
__4.2.2 글의 메타데이터
__4.2.3 사용자 정보
__4.2.4 매거진 정보
__4.2.5 예측 대상 사용자 정보
4.3 추천 시스템의 기술 이해 및 적용 검토
__4.3.1 협업 필터링의 이해
____이웃 기반 협업 필터링
____세션 기반 협업 필터링
__4.3.2 협업 필터링 적용 검토
____Word2Vec 기반 추천
____연속 조회 통계 기반 추천
____세션 기반 협업 필터링 적용 기간
__4.3.3 콘텐츠 기반 필터링의 이해
__4.3.4 콘텐츠 기반 필터링 적용 검토
__4.3.5 예외 상황 대응하기
4.4 협업 필터링 구현
__4.4.1 모델 생성 코드 살펴보기
__4.4.2 예측 코드 살펴보기
__4.4.3 성능 평가
____협업 필터링 예측 결과 생성
____협업 필터링 성능 평가
____협업 필터링 튜닝
4.5 콘텐츠 기반 필터링 구현
__4.5.1 예측 코드 살펴보기
__4.5.2 Doc2Vec 데이터 전처리 살펴보기
__4.5.3 Doc2Vec 모델 생성 코드 살펴보기
__4.5.4 성능 평가
____콘텐츠 기반 필터링 예측 결과 생성
____콘텐츠 기반 필터링 성능 평가
4.6 앙상블 구현
__4.6.1 예측 보조 함수 살펴보기
__4.6.2 예측 추가 함수 살펴보기
__4.6.3 메인 코드 예측 준비 부분 살펴보기
__4.6.4 메인 코드 앙상블 부분 살펴보기
__4.6.5 성능 평가
4.7 최종 결과 제출하기
__4.7.1 깃허브 저장소 만들기
__4.7.2 깃허브 저장소에 코드 및 설명 올리기

관련이미지

저자소개

김상훈, 구경훈, 김정오 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 48권 / 현재구매 가능도서 47권)

선택한 상품 북카트담기
펼쳐보기

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용