간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (21,380원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (15,750원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (18,000원)
(최대할인 4만원 / 2만원 이상 결제)
Close

딥러닝을 위한 수학 : 인공지능의 핵심 원리를 이해하고 파이썬으로 구현해 보는

원제 : 最短コ-スでわかるディ-プラ-ニングの數學 綴じこみ!最短コ-スマップ
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 253
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

25,000원

  • 22,500 (10%할인)

    1,250P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서(46)

  • 상품권

AD

책소개

AI의 블랙박스를 열어 보자!

딥러닝의 본질을 이해하는 데 필요한 ‘수학'을 ‘최단 코스'로 배울 수 있습니다! 이 책은 미분과 벡터, 행렬과 확률과 같은 딥러닝에 필요한 수학을 고등학교 1학년 수준부터 복습해 나가면서 설명하고 있습니다. 최단 코스로 익힐 수 있도록 꼭 필요한 수학 개념만 간추려서 설명하고 그것들의 관계를 그림으로 표현했습니다. 이론으로 배운 수학적 개념은 주피터 노트북에서 실행할 수 있도록 소스코드도 함께 제공합니다. 이 책을 통해 ‘딥러닝'의 동작 원리를 직접 체험해보기 바랍니다.

목차

[1부] 준비편

실습 환경 구성
__소스코드 다운로드
__개인 PC에서 주피터 노트북 사용하기
__아나콘다를 사용하는 경우(윈도우)
__아나콘다를 사용하는 경우(macOS)
__비주얼 스튜디오 코드를 사용하는 경우
__클라우드에서 주피터 노트북 사용하기
미리 알아두면 좋을 지식
__인공지능 관련 용어의 관계도
__인공지능의 포함 관계
__머신러닝의 포함 관계
이 책에서 사용하는 수학 기호와 그리스 문자

[2부] 도입편

▣ 01장: 머신러닝 입문
1.1 인공지능과 머신러닝
1.2 머신러닝이란?
__1.2.1 머신러닝 모델이란?
__1.2.2 학습 방법
__1.2.3 지도학습에서의 회귀와 분류
__1.2.4 학습 단계와 예측 단계
__1.2.5 손실함수와 경사하강법
1.3 처음으로 만나는 머신러닝 모델
1.4 이 책에서 다루는 머신러닝 모델
1.5 머신러닝과 딥러닝에서 수학이 필요한 이유
1.6 이 책의 구성

[3부] 이론편

▣ 02장: 미분과 적분
2.1 함수
__2.1.1 함수란?
__2.1.2 함수의 그래프
2.2 합성함수와 역함수
__2.2.1 합성함수
__2.2.2 역함수
2.3 극한과 미분
__2.3.1 미분의 정의
__2.3.2 미분과 함숫값의 근사 표현
__2.3.3 접선의 방정식
2.4 극대와 극소
2.5 다항식의 미분
__2.5.1 xn의 미분
__2.5.2 미분의 선형성과 다항식의 미분
__2.5.3 xr의 미분
2.6 곱의 미분
2.7 합성함수와 역함수의 미분
__2.7.1 합성함수의 미분
__2.7.2 역함수의 미분
2.8 몫의 미분
2.9 적분

▣ 03장: 벡터와 행렬
3.1 벡터
3.1.1 벡터란?
__3.1.2 벡터의 표기 방법
__3.1.3 벡터의 성분 표시
__3.1.4 다차원으로 확장
__3.1.5 벡터 성분의 표기 방법
3.2 덧셈, 뺄셈, 스칼라배
__3.2.1 벡터의 덧셈
__3.2.2 벡터의 뺄셈
__3.2.3 벡터의 스칼라배
3.3 길이와 거리
__3.3.1 벡터의 길이
__3.3.2 Σ 기호의 의미
__3.3.3 벡터 간의 거리
3.4 삼각함수
__3.4.1 삼각비
__3.4.2 삼각함수
__3.4.3 삼각함수의 그래프
__3.4.4 직각삼각형의 변을 삼각함수로 표현하기
3.5 내적
__3.5.1 절댓값과 내적의 정의
__3.5.2 벡터 성분과 내적의 공식
3.6 코사인 유사도
__3.6.1 코사인 유사도
3.7 행렬과 행렬 연산
__3.7.1 1 출력 노드의 내적 표현
__3.7.1 3 출력 노드의 행렬곱 표현

▣ 04장: 다변수함수의 미분
4.1 다변수함수
4.2 편미분
4.3 전미분
4.4 전미분과 합성함수
4.5 경사하강법

▣ 05장: 지수함수와 로그함수
5.1 지수함수
__5.1.1 거듭제곱의 정의와 법칙
__5.1.2 거듭제곱의 확장
__5.1.3 함수로의 확장
5.2 로그함수
5.3 로그함수의 미분
5.4 지수함수의 미분
5.5 시그모이드 함수
5.6 소프트맥스 함수

▣ 06장: 확률과 통계
6.1 확률변수와 확률분포
6.2 확률밀도함수와 확률분포함수
6.3 가능도함수와 최대가능도 추정

[4부] 실습편

▣ 07장: 선형회귀 모델
7.1 손실함수의 편미분과 경사하강법
7.2 예제 개요
7.3 학습 데이터의 표기 방법
7.4 경사하강법의 접근법
7.5 예측 모델
7.6 손실함수
7.7 손실함수의 미분 계산
7.8 경사하강법의 적용
7.9 프로그램 구현
7.10 다중회귀 모델로의 확장

▣ 08장: 로지스틱 회귀 모델 (이진 분류)
8.1 예제 개요
8.2 회귀 모델과 분류 모델의 차이
8.3 예측 모델
8.4 손실함수(교차 엔트로피 함수)
8.5 손실함수의 미분 계산
8.6 경사하강법의 적용
8.7 프로그램 구현

▣ 09장: 로지스틱 회귀 모델 (다중 클래스 분류)
9.1 예제 개요
9.2 모델의 기본 개념
9.3 가중치 행렬
9.4 소프트맥스 함수
9.5 손실함수
9.6 손실함수의 미분 계산
9.7 경사하강법의 적용
9.8 프로그램 구현

▣ 10장: 딥러닝 모델
10.1 예제 개요
10.2 모델 구성과 예측함수
10.3 손실함수
10.4 손실함수의 미분 계산
10.5 오차역전파
10.6 경사하강법의 적용
10.7 프로그램 구현 (1)
10.8 프로그램 구현 (2)
10.9 프로그램 구현 (3)
10.10 프로그램 구현 (4)

[5부] 발전편

▣ 11장: 실용적인 딥러닝을 위해
11.1 프레임워크의 활용
11.2 CNN
11.3 RNN과 LSTM
11.4 수치미분
11.5 심화 학습법
11.6 과적합 대책
11.7 학습의 단위
11.8 가중치 행렬의 초기화
11.9 다음 목표를 향해

[6부] 부록

그리스 문자 목록

관련이미지

저자소개

아카이시 마사노리 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

1985년에 도쿄대학공학부 계수공학과를 졸업하고 1987년 도쿄대학공학계 연구과 계수공학 석사 과정을 수료한 후 일본 IBM에 입사했다. 도쿄 기초 연구소에서 수식 처리 시스템을 연구, 개발하다 1993년 시스템 엔지니어 부문으로 옮겨 오픈 시스템의 인프라 설계 및 구축, 애플리케이션 설계 등의 업무를 수행했다. 2013년에는 스마트 시티 사업에 참여하고 2016년에는 왓슨(Watson) 사업부로 옮겨 현재까지 이르고 있다.
저서로는 《왓슨 스튜디오로 시작하는 머신러닝, 심층학습》 《실무 현장에서 사용할 수 있다! Python 자연어 처리 입문》이 있다. 교토정보대학원대학

펼쳐보기
아카이시 마사노리 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

생년월일 1975

저자 신상재는 일본 기술서 번역가이자 ‘번역하는 개발자’ 유튜버다. 삼성SDS에서 소프트웨어 아키텍트로 활동하다가 애자일 코어 팀 ACT에 합류하였다. 기술보다는 사람이라는 깨달음을 얻은 후부터는 최신 기술을 익히기보다는 사람의 마음을 읽고, 견고한 시스템을 구축하는 것보다는 유연한 팀을 빌딩하고, 서비스에 가치를 부여하기보다는 사람에게 동기를 부여하는 것에 더 많은 관심이 생겼다. 주요 번역서로는 『비즈니스 프레임워크 도감』(로드북, 2020), 『인공지능을 위한 수학』(프리렉, 2018), 『스프링 철저 입문』(위키북스, 2018), 『1억배 빠른 양자 컴퓨터가

펼쳐보기

이 상품의 시리즈

(총 48권 / 현재구매 가능도서 47권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용