간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 5/1~5/31 기간 중 1회)
삼성카드 6% (15,230원)
(삼성카드 6% 청구할인)
인터파크 롯데카드 5% (15,390원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (11,340원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (12,960원)
(최대할인 4만원 / 2만원 이상 결제)
Close

머신러닝 실무 프로젝트 : 실전에 필요한 머신러닝 시스템 설계, 데이터 수집, 효과 검증 노하우

원제 : 仕事ではじめる機械?習(Machine Learning at Work)
소득공제

2013년 9월 9일 이후 누적수치입니다.

공유하기
정가

18,000원

  • 16,200 (10%할인)

    900P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(1)

  • 상품권

AD

책소개

실전에 필요한 머신러닝 시스템 설계, 데이터 수집, 효과 검증 노하우

머신러닝 알고리즘처럼 다른 책에서도 많이 다루는 주제 대신, 이 책에서는 “실무에서는 어떻게 해야 하지?”라는 궁금증을 해결하는 데 집중한다. 1부에서는 머신러닝 프로젝트를 처음 시작하는 방법, 시스템 구성법, 학습용 데이터 수집, 효과 검증에 필요한 저자들의 노하우를 알려준다. 2부에서는 저자가 엄선한 세 가지 프로젝트를 따라 해보며 실무 감각을 키울 수 있도록 구성했다.

★ 주요 내용
1부. 머신러닝 실무 노하우
- 머신러닝 프로젝트 처음 시작하기
- 머신러닝으로 할 수 있는 일
- 학습 결과 평가하기
- 기존 시스템에 머신러닝 통합하기
- 학습 데이터 수집하기
- 효과 검증하기
2부. 머신러닝 실무 프로젝트
- 프로젝트 1 : 영화 추천 시스템 만들기
- 프로젝트 2 : 킥스타터 분석하기
- 프로젝트 3 : 업리프트 모델링으로 마케팅 효율 높이기

출판사 서평

현업 개발자를 위한 색다른 머신러닝 실무서

머신러닝을 실제 시스템에 적용하려면 기존 이론서들에서는 다루지 않지만 꼭 필요한 지식이 적지 않다. 탐색적 분석에 대한 경험과 데이터 분석 업무를 수행하면서 경험적으로 익혀온 묵시적 지식 등이 여기 해당한다. 그래서 이 책은 머신러닝 프로젝트를 진행하는 과정을 따라 가며 실무자가 느낄 궁금증과 갈증을 해소해주도록 꾸몄다. 다른 입문서에서 다루는 머신러닝 알고리즘은 과감히 축약하고 노하우에 집중하여 얇고 경제적이다. 경험 많은 실무자라면 자신의 노하우와 비교, 정리하여 동료나 후임에게 전수해주는 모습도 아름다울 것이다.

머신러닝 알고리즘 입문서가 아닌 만큼, 머신러닝 초보자라면 다른 머신러닝 책으로 기초를 닦고 읽으면 저자들이 전하고자 하는 핵심이 더욱 잘 전달될 것이다.

[추천사]

“실제 머신러닝 시스템을 설계하는 방법을 폭넓게 설명하는 책이다. 7장 이후는 프로젝트를 통해 실제로 경험해보는 데 무게를 두고 있다. 머신러닝 기초를 익힌 후 읽으면 더 쉽게 이해될 것이다!”
_사이토, 아마존 독자

목차

1부. 머신러닝 실무 노하우

1장. 머신러닝 프로젝트 처음 시작하기
1.1 머신러닝은 어떻게 동작하는가
1.2 머신러닝 프로젝트의 과정
__1.2.1 문제 정의하기
__1.2.2 머신러닝을 사용하지 않는 방법 검토하기
__1.2.3 시스템 설계하기
__1.2.4 알고리즘 선택하기
__1.2.5 특징, 정답 데이터, 로그 설계하기
__1.2.6 데이터 전처리
__1.2.7 학습 및 파라미터 튜닝
__1.2.8 시스템에 통합하기
1.3 운영 시스템에서 발생하는 머신러닝 문제 대처 방법
__1.3.1 사람이 작성한 황금기준을 사용하여 예측 성능 모니터링
__1.3.2 예측 모델을 모듈화하여 알고리즘에 대한 A/B 테스트 수행
__1.3.3 모델 버전관리를 통한 자유로운 롤백
__1.3.4 데이터 처리 파이프라인 저장
__1.3.5 개발 시스템과 운영 시스템의 언어 및 프레임워크 일치
1.4 머신러닝 시스템을 성공적으로 운영하려면
1.5 정리

2장. 머신러닝으로 할 수 있는 일
2.1 머신러닝 알고리즘 선택 방법
2.2 분류
__2.2.1 퍼셉트론
__2.2.2 로지스틱 회귀
__2.2.3 서포트 벡터 머신
__2.2.4 신경망
__2.2.5 k-최근접 이웃
__2.2.6 결정 트리, 랜덤 포레스트, GBDT
2.3 회귀
__2.3.1 선형 회귀의 원리
2.4 군집화와 차원 축소
__2.4.1 군집화
__2.4.2 차원 축소
2.5 그 외
__2.5.1 추천
__2.5.2 이상 탐지
__2.5.3 패턴 마이닝
__2.5.4 강화 학습
2.6 정리

3장. 학습 결과 평가하기
3.1 분류 결과에 대한 평가 행렬
__3.1.1 그냥 정확도를 사용하면 될까?
__3.1.2 데이터 분포가 치우친 경우를 위한 지표 - 정밀도와 재현율
__3.1.3 균형 잡힌 성능을 평가하는 F-점수
__3.1.4 혼동행렬 따라잡기
__3.1.5 다중 클래스 분류의 평균 구하기 - 마이크로 평균과 매크로 평균
__3.1.6 분류 모델 비교하기
3.2 회귀 모델 평가하기
__3.2.1 평균제곱근오차
__3.2.2 결정 계수
3.3 머신러닝 시스템의 A/B 테스트
3.4 정리

4장. 기존 시스템에 머신러닝 통합하기
4.1 기존 시스템에 머신러닝을 통합하는 과정
4.2 시스템 설계
__4.2.1 헷갈리기 쉬운 ‘배치 처리’와 ‘배치 학습’
__4.2.2 배치 처리로 학습 + 예측 결과를 웹 애플리케이션에서 직접 산출(예측을 실시간 처리)
__4.2.3 배치 처리로 학습 + 예측 결과를 API를 통해 사용(예측을 실시간 처리)
__4.2.4 배치 처리로 학습 + 예측 결과를 DB에 저장하고 사용(예측을 배치 처리)
__4.2.5 실시간 처리로 학습
__4.2.6 각 패턴의 특성
4.3 로그 설계
__4.3.1 특징과 훈련 데이터에 사용되는 정보
__4.3.2 로그 저장하기
__4.3.3 로그 설계 시의 주의점
4.4 정리

5장. 학습 데이터 수집하기
5.1 학습 데이터를 얻는 방법
5.2 공개된 데이터셋이나 모델 활용
5.3 개발자가 직접 만드는 데이터셋
5.4 동료나 친구에게 데이터 입력을 부탁
5.5 크라우드소싱 활용
5.6 서비스에 수집 기능을 넣고 사용자가 입력하게 함
5.7 정리

6장. 효과 검증하기
6.1 효과 검증
__6.1.1 효과 검증까지 거쳐야 할 과정
__6.1.2 오프라인에서 검증하기 어려운 부분
6.2 가설 검정
__6.2.1 동전이 찌그러지진 않았을까
__6.2.2 두 그룹의 모비율의 차를 이용한 검정
__6.2.3 거짓 양성과 거짓 음성
6.3 가설 검정에서 주의할 점
__6.3.1 반복해서 검정하는 경우
__6.3.2 유의한 차이와 비즈니스 임팩트
__6.3.3 동시에 여러 가설 검정하기
6.4 인과효과 추정
__6.4.1 루빈 인과모형
__6.4.2 선택 편향
__6.4.3 무작위 대조시험
__6.4.4 과거와의 비교는 어렵다
6.5 A/B 테스트
__6.5.1 그룹 선정과 표본 크기
__6.5.2 A/A 테스트로 그룹의 균질성 확인
__6.5.3 A/B 테스트를 위한 구조 만들기
__6.5.4 테스트 종료
6.6 정리

2부. 머신러닝 실무 프로젝트

7장. 프로젝트 1: 영화 추천 시스템 만들기
7.1 시나리오
__7.1.1 추천 시스템이란
__7.1.2 응용 분야
7.2 추천 시스템 제대로 알기
__7.2.1 데이터 설계와 데이터 입수
__7.2.2 명시적 데이터와 묵시적 데이터
__7.2.3 추천 시스템의 알고리즘
__7.2.4 사용자 기반 협업 필터링
__7.2.5 아이템 기반 협업 필터링
__7.2.6 모델 기반 협업 필터링
__7.2.7 내용 기반 필터링
__7.2.8 협업 필터링과 내용 기반 필터링의 장단점
__7.2.9 평가 척도
7.3 무비렌즈 데이터 분석하기
7.4 추천 시스템 구현하기
__7.4.1 인수분해 머신을 이용한 추천
__7.4.2 인수분해 머신을 이용한 본격적인 학습
__7.4.3 사용자와 영화 외의 정보 추가하기
7.5 정리

8장. 프로젝트 2: 킥스타터 분석하기 - 머신러닝을 사용하지 않는 선택지
8.1 킥스타터 API 찾아보기
8.2 킥스타터 크롤러 만들기
8.3 JSON 데이터를 CSV로 변환하기
8.4 엑셀로 데이터 훑어보기
8.5 피벗 테이블로 데이터 분석하기
8.6 목표액 달성 후 취소된 프로젝트 살펴보기
8.7 국가별로 살펴보기
8.8 보고서 작성하기
8.9 이 다음에 할 일
8.10 정리

9장. 프로젝트 3: 업리프트 모델링으로 마케팅 효율 높이기
9.1 업리프트 모델링의 사분면
9.2 A/B 테스트를 확장한 업리프트 모델링
9.3 업리프트 모델링에 사용할 데이터셋 만들기
9.4 두 가지 예측 모델을 이용한 업리프트 모델링
9.5 AUUC로 업리프트 모델링 평가하기
9.6 실제 문제에 적용하기
9.7 업리프트 모델링을 서비스에 적용하기
9.8 정리

저자소개

나카야마 신타, 니시바야시 다카시 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

심효섭 [역] 신작알림 SMS신청
생년월일 -

심효섭은 연세대학교 문헌정보학과를 졸업하고 모교 중앙도서관과의 인연으로 도서관 솔루션 업체에서 일하게 되면서 개발을 시작했다.
네이버에서 웹 서비스 개발 업무를 맡았으며, 웹 서비스 외에 머신러닝에 대한 공부도 꾸준히 하고 있다. 최근 관심사는 회사에 속하지 않고도 지속 가능한 삶이다.
옮긴 책으로 『머신러닝 실무 프로젝트』(한빛미디어), 『딥 러닝 제대로 시작하기』, 『딥 러닝 제대로 정리하기』, 『엔지니어를 위한 파이썬』, 『그림과 수식으로 배우는 통통 머신러닝』, 『그림과 수식으로 배우는 통통 인공지능』(이상 제이펍) 등이 있다.

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용