간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 12/1~12/31 기간 중 1회)
인터파크 롯데카드 5% (49,590원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (36,540원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (41,760원)
(최대할인 4만원 / 2만원 이상 결제)
Close

러닝! OpenCV 3 : OpenCV 라이브러리 창시자가 알려주는 컴퓨터 비전 완벽 가이드

원제 : Learning OpenCV 3
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 53
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

58,000원

  • 52,200 (10%할인)

    2,900P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서(46)

  • 상품권

AD

책소개

빠르게 팽창하고 있는 컴퓨터 비전 기술 분야를 이 실용서로 시작하라. 오픈 소스 OpenCV 라이브러리 창시자인 아드리안 캘러(Adrian Kaehler)와 개리 브래드스키(Gary Bradski)가 쓴 이 책은 개발자와 재미로 읽는 독자를 위한 완벽한 소개서다. 이 책을 통해 컴퓨터가 데이터를 ‘보고’ 결정을 내리는 응용 프로그램을 작성하기 위해 알아야 할 방법을 배울 것이다.

OpenCV는 보안, 의료 이미징, 패턴 및 얼굴 인식, 로봇 공학 그리고 공장 제품 검사와 같은 다양한 상업용 응용 프로그램에 사용하는 500개 이상의 함수를 제공한다. 이 책은 컴퓨터 비전과 OpenCV의 확실한 기초 지식을 제공하고 간단하거나 정교한 비전 응용 프로그램을 작성할 수 있게 해준다. 각 장의 실전 연습 문제를 통해 배운 내용을 적용해 볼 수 있다.

이 책은 컴퓨터 비전을 위한 머신러닝 도구를 포함해 최신 C++로 구현한 OpenCV 라이브러리 전체를 다룬다.

★ 이 책에서 다루는 내용 ★
◎ OpenCV 데이터 타입과 배열 타입, 배열 연산 학습
◎ HighGUI를 이용한 정지/동영상 이미지 캡처와 저장
◎ 늘이기, 줄이기, 워핑, 재매핑 및 복구를 위한 이미지 변환
◎ 얼굴 탐지를 포함한 패턴 인식 탐구
◎ 시각 필드를 통한 객체와 모션 추적
◎ 스테레오 비전으로 3D 이미지 재구성
◎ OpenCV의 기본/고급 머신러닝 기술

목차

▣ 01장: 개요
OpenCV란?
OpenCV는 누가 사용하는가?
컴퓨터 비전이란?
OpenCV의 기원
___OpenCV 블록 다이어그램
___IPP를 이용한 OpenCV의 성능 향상
___누가 OpenCV를 소유하는가?
OpenCV 다운로드 및 설치
___설치
Git으로 최신 OpenCV 얻기
OpenCV에 대한 더 많은 문서
___제공되는 문서
___온라인 문서와 위키
OpenCV Contribution 저장소
___Contributed 모듈 다운로드하고 빌드하기
이식성
요약
연습 문제

▣ 02장: OpenCV 소개
Include 파일
___관련 자료
첫 번째 프로그램 - 이미지 출력
두 번째 프로그램 - 비디오
재생 위치 이동하기
___간단한 변환
별로 단순하지 않은 변환
카메라 입력
AVI 파일에 쓰기
요약
연습 문제

▣ 03장: OpenCV 데이터 타입 알아보기
기본 사항
OpenCV 데이터 타입
___기본 데이터 타입의 개요
___기본 데이터 타입: 세부사항 알아보기
___도우미 객체
___유틸리티 함수
___템플릿 구조
요약
연습 문제

▣ 04장: 이미지 및 대형 배열 타입
동적 및 가변 저장장치
___cv::Mat 클래스: N차원의 밀집 배열
___배열 만들기
___배열의 개별 요소 접근하기
___다차원 배열 반복자: NAryMatIterator
___블록 단위로 배열 요소 접근
___행렬 표현식: 대수학과 cv::Mat
___포화 캐스팅
___배열로 할 수 있는 더 많은 것
___cv::SparseMat 클래스: 희소 배열
___희소 배열의 요소에 접근하기
___희소 배열에 있는 고유한 함수들
___대형 배열 타입의 템플릿 구조
요약
연습 문제

▣ 05장: 배열 연산
배열 타입으로 할 수 있는 더 많은 일
___cv::abs()
___cv::absdiff()
___cv::add()
___cv::addWeighted()
___cv::bitwise_and()
___cv::bitwise_not()
___cv::bitwise_or()
___cv::bitwise_xor()
___cv::calcCovarMatrix()
___cv::cartToPolar()
___cv::checkRange()
___cv::compare()
___cv::completeSymm()
___cv::convertScaleAbs()
___cv::countNonZero()
___cv::cvarrToMat()
___cv::dct()
___cv::dft()
___cv::cvtColor()
___cv::determinant()
___cv::divide()
___cv::eigen()
___cv::exp()
___cv::extractImageCOI()
___cv::flip()
___cv::gemm()
___cv::getConvertElem()과 cv::getConvertScaleElem()
___cv::idct()
___cv::idft()
___cv::inRange()
___cv::insertImageCOI()
___cv::invert()
___cv::log()
___cv::LUT()
___cv::magnitude()
___cv::Mahalanobis()
___cv::max()
___cv::mean()
___cv::meanStdDev()
___cv::merge()
___cv::min()
___cv::minMaxIdx()
___cv::minMaxLoc()
___cv::mixChannels()
___cv::mulSpectrums()
___cv::multiply()
___cv::mulTransposed()
___cv::norm()
___cv::normalize()
___cv::perspectiveTransform()
___cv::phase()
___cv::polarToCart()
___cv::pow()
___cv::randu()
___cv::randn()
___cv::randShuffle()
___cv::reduce()
___cv::repeat()
___cv::scaleAdd()
___cv::setIdentity()
___cv::solve()
___cv::solveCubic()
___cv::solvePoly()
___cv::sort()
___cv::sortIdx()
___cv::split()
___cv::sqrt()
___cv::subtract()
___cv::sum()
___cv::trace()
___cv::transform()
___cv::transpose()
요약
연습 문제

▣ 06장: 그리기와 주석 달기
도형 그리기
___라인 아트와 채워진 다각형
___폰트와 텍스트
요약
연습 문제

▣ 07장: OpenCV 펑터
작업 처리 객체
___주성분 분석(cv::PCA)
___특이값 분해(cv::SVD)
___난수 생성기(cv::RNG)
요약
연습 문제

▣ 08장: 이미지, 비디오, 데이터 파일
HighGUI: 포터블 그래픽 툴킷
___이미지 파일 다루기
___이미지 로딩과 저장
___코덱에 대한 참고 사항
___압축과 압축 해제
비디오 다루기
___cv::VideoCapture 객체로 비디오 읽기
___cv::VideoWriter 객체로 비디오 쓰기
데이터 지속성
___cv::FileStorage에 쓰기
___cv::FileStorage에서 읽기
___cv::FileNode
요약
연습 문제

▣ 09장: 크로스 플랫폼과 기본 윈도우
윈도우 작업
___HighGUI 기본 그래픽 유저 인터페이스
___Qt 백엔드로 작업하기
___전체 GUI 툴킷과 OpenCV 통합
요약
연습 문제

▣ 10장: 필터와 컨벌루션
개요
시작하기 전에
___필터, 커널, 컨벌루션
___테두리 외삽법과 바운더리 조건
경계값 연산
___오츠(Otsu)의 알고리즘
___적응형 경계값
스무딩
___단순 블러 및 박스 필터
___메디안 필터
___가우시안 필터
___바이레터럴 필터
미분 및 그래디언트
___소벨 미분
___샤르(Scharr) 필터
___라플라시안
이미지 모폴로지
___팽창과 침식
___일반 모폴로지 함수
___열림과 닫힘 연산
___탑햇과 블랙햇 연산
___자신만의 커널 만들기
임의의 선형 필터를 사용한 컨벌루션
___cv::filter2D()로 일반적인 필터 만들기
___cv::sepFilter2D를 사용해 분리 가능한 일반 필터 만들기
커널 빌더
요약
연습 문제

▣ 11장: 일반 이미지 변환
개요
늘이기, 줄이기, 왜곡하기, 회전하기
___균일 크기 조절
___이미지 피라미드
___비균일 매핑
___아핀 변환
___원근 변환
일반적인 재매핑
___극좌표 매핑
___로그 극좌표(LogPolar)
___임의의 매핑
이미지 복구
___인페인팅
___노이즈 제거
히스토그램 평활화
___cv::equalizeHist(): 콘트라스트 평활화
요약
연습 문제

▣ 12장: 이미지 분석
개요
이산 푸리에 변환
___cv::dft(): 이산 푸리에 변환
___cv::idft(): 역 이산 푸리에 변환
___cv::mulSpectrums(): 스펙트럼 곱셈
___이산 푸리에 변환을 이용한 컨벌루션
___cv::dct(): 이산 코사인 변환
___cv::idct(): 역 이산 코사인 변환
적분 이미지
___표준 합산 적분을 위한 cv::integral()
___제곱 합산 적분을 위한 cv::integral()
___기울어진 합산 적분을 위한 cv::integral()
캐니 엣지 검출기
cv::Canny()
허프 변환
___허프 선 변환
___허프 원 변환
거리 변환
___cv::distanceTransform(): 라벨이 없는 거리 변환
___cv::distanceTransform(): 라벨이 붙는 거리 변환
세그멘테이션
___색 채움(Flood Fill)
___그랩컷
___평균 이동 세그멘테이션
요약
연습 문제

▣ 13장: 히스토그램과 템플릿
OpenCV의 히스토그램 데이터 표현
___cv::calcHist(): 데이터에서 히스토그램 만들기
히스토그램을 이용한 기본 조작
___히스토그램 정규화
___히스토그램 경계값
___가장 인기 있는 빈 찾기
___두 히스토그램 비교하기
더 복잡한 히스토그램 메서드
___불도저 거리
역투영
템플릿 매칭
___제곱 차이 매칭 메서드(cv::TM_SQDIFF)
요약
연습 문제

▣ 14장: 윤곽선
윤곽선 찾기
___윤곽선 계층 구조
___윤곽선 그리기
___윤곽선 예제
___다른 윤곽선 예제
___신속한 연결된 구성 요소 분석
윤곽선을 이용한 더 많은 작업
___다각형 근사법
___기하학 및 요약 특성
___기하학적 테스트
윤곽선과 이미지 매칭
___모멘트
___모멘트에 대한 추가 정보
___Hu 모멘트와 매칭
___형상 컨텍스트를 사용해 형상 비교하기
요약
연습 문제

▣ 15장: 배경 분리
배경 분리의 개요
배경 분리의 약점
장면 모델링
___픽셀의 슬라이스
___프레임 간 차이
평균화된 배경 메서드
___누적된 평균, 분산, 공분산
더 진보된 배경 분리 메서드
___구조체 만들기
___배경 러닝하기
___움직이는 전경 객체에서 러닝하기
___배경 차분으로 전경 객체 찾기
___코드북 배경 모델 사용하기
___코드북 모델에 대한 몇 가지 생각
배경을 정리하는 연결된 구성 요소
___빠른 테스트
두 배경 메서드 비교하기
OpenCV에서 배경 분리 구현
___cv::BackgroundSubtractor 기반 클래스
___KB 메서드
___지브코비치 메서드
___cv::BackgroundSubtractorMOG2 클래스
요약
연습 문제

▣ 16장: 키포인트와 기술자
키포인트와 트래킹의 기초
___코너 찾기
___옵티컬 플로우 소개
___희소 옵티컬 플로우를 위한 루카스-카나데 메서드
일반화된 키포인트와 기술자
___옵티컬 플로우, 트래킹, 인식
___OpenCV가 키포인트와 기술자를 제어하는 일반적인 방법
___핵심 키포인트 검출 메서드
___해리스-시-토마시(Harris-Shi-Toma
___피처 검출기와 cv::GFTTDetector
___키포인트 필터링
___매칭 메서드
___결과 표시하기
요약
연습 문제

▣ 17장: 트래킹
트래킹 개념
밀집 옵티컬 플로우
___파네백 다항식 확장 알고리즘
___듀얼 TV-L1 알고리즘
___단순 플로우 알고리즘
평균 이동과 캠시프트 트래킹
___평균 이동
___캠시프트
모션 템플릿
추정기
___칼만 필터
___확장 칼만 필터에 대한 간략한 설명
요약
연습 문제

▣ 18장: 카메라 모델과 캘리브레이션
카메라 모델
___투영 기하학의 기초
___로드리게스 변환
___렌즈에 의한 왜곡
캘리브레이션(Calibration)
___회전 행렬과 평행 이동 벡터
___캘리브레이션용 보드
___호모그래피
___카메라 캘리브레이션
왜곡 제거
___왜곡 제거 지도
___cv::convertMaps()를 사용해 왜곡 제거 지도의 표현 변환하기
___cv::initUndistortRectifyMap()을 사용해 왜곡 제거 지도 계산하기
___cv::remap()을 사용한 이미지의 왜곡 제거
___cv::undistort()를 사용한 왜곡 제거
___cv::undistortPoints()를 사용한 희소 왜곡 제거
모두 한꺼번에 캘리브레이션하기
요약
연습 문제

▣ 19장: 투영과 3차원 비전
투영
아핀과 원근 변환
___조감도 변환 예제
3차원 자세 추정
___단일 카메라를 이용한 자세 추정
스테레오 이미징
___삼각 측량
___에피폴라 기하 구조
___필수 및 기본 행렬
___에피폴라 선 계산하기
___스테레오 캘리브레이션
___스테레오 정류
___스테레오 대응
___스테레오 캘리브레이션, 정류, 대응 코드 예제
___3차원 재투영을 통한 깊이 맵
모션 구조
2차원 및 3차원 라인 피팅
요약
연습 문제

▣ 20장: OpenCV에서의 머신러닝 기본
머신러닝이란?
___훈련 집합과 테스트 집합
___지도 러닝과 비지도 러닝
___생성 모델과 판별 모델
___OpenCV의 ML 알고리즘
___비전에서 머신러닝 사용하기
___변수 중요성
___머신러닝 문제 진단하기
ML 라이브러리의 레거시 루틴
___K-평균
___마할라노비스 거리
요약
연습 문제

▣ 21장: StatModel: 머신러닝을 위한 OpenCV 표준 모델
ML 라이브러리의 일반 루틴
___훈련과 cv::ml::TrainData 구조체
___예측
cv::StatModel을 사용한 머신러닝 알고리즘
___단순/일반 베이즈 분류기
___바이너리 의사 결정 트리
___부스팅
___랜덤 트리
___기댓값 최대화
___K-최근접 이웃(KNN)
___다층 퍼셉트론(MLP)
___SVM(서포트 벡터 머신)
요약
연습 문제

▣ 22장: 객체 검출
트리 기반 객체 검출 기법
___캐스케이드 분류기
___지도 학습 및 부스팅 이론
___새로운 객체 훈련
서포트 벡터 머신을 이용한 객체 검출
___객체 검출을 위한 Latent SVM
___Bag of Words 알고리즘과 의미에 의한 분류
요약
연습 문제

▣ 23장: OpenCV의 미래
과거와 현재
___OpenCV 3.x 버전
이전에 예측한 내용이 얼마나 맞을까?
OpenCV의 미래
___현재 GSoC(Google Summer of Code) 작업
___커뮤니티 기여
___OpenCV.org
인공 지능에 대한 일부 억측
책을 마치며

▣ 부록A: 평면 분할
들로네 삼각 분할, 보로노이 터셀레이션
___들로네 또는 보로노이 재분할
___들로네 재분할 탐색하기
___사용 예제
연습 문제

▣ 부록B: opencv_contrib
opencv_contrib 모듈의 개요
___opencv_contrib의 내용

▣ 부록C: 캘리브레이션 패턴
___OpenCV가 사용하는 캘리브레이션 패턴

저자소개

아드리안 캘러 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

장길호, 정태석, 신재익, 정은식, 전향란, 윤훈남 [역] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 48권 / 현재구매 가능도서 47권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용