간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 5만원 이상 결제시, 12/1~12/31 기간 중 1회)
인터파크 롯데카드 5% (21,380원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (15,750원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (18,000원)
(최대할인 4만원 / 2만원 이상 결제)
Close

머신러닝 이론 입문

원제 : ITエンジニアのための機械?習理論入門
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 72
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

25,000원

  • 22,500 (10%할인)

    1,250P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서(46)

  • 상품권

AD

책소개

머신러닝의 바탕이 되는 데이터 사이언스의 본질을 이해하자!

현재 화제가 되고 있는 머신러닝(기계학습)의 툴과 라이브러리는 내부에서 어떻게 계산을 하는 걸까? 계산해서 얻은 결과는 어떤 의미를 담고 있을까? 그 결과를 어떻게 비즈니스적으로 활용하면 좋을까? 이런 의문을 가진 엔지니어가 늘고 있습니다.

이 책은 IT 개발자 중에서 머신러닝 알고리즘을 공부하고 싶어하며 그 알고리즘 속에 포함된 이론을 이해하여 업무에 활용하고 싶어하는 독자를 대상으로 쓰여졌습니다. 머신러닝 기술은 여러모로 활용되겠지만 이 책은 '데이터 분석 결과를 업무 판단에 이용한다'라는 개념을 가지고 각종 알고리즘을 설명합니다.

알고리즘의 이해를 위해 이 책에서는 머신러닝 이론을 수학적인 배경부터 하나씩 차근차근 설명합니다. 또 파이썬으로 샘플 프로그램을 실행해 볼 수 있도록 하였으며, 그 결과를 보는 것으로 머신러닝을 지탱하는 이론을 실감할 수 있도록 구성돼 있습니다.

목차

▣ 01장: 데이터 과학과 머신러닝
1.1 업무상에서 데이터 과학이 하는 역할
1.2 머신러닝 알고리즘 분류
___1.2.1 분류: 클래스 판정을 산출하는 알고리즘
___1.2.2 회귀분석: 수치를 예측하는 알고리즘
___1.2.3 클러스터링: 지도자 없이 그룹화하는 알고리즘
___1.2.4 그 밖의 알고리즘
1.3 이 책에서 사용하는 예제
___1.3.1 회귀분석에 의한 관측값 추측
___1.3.2 선형판별에 의한 신규 데이터 분류
___1.3.3 이미지 파일 감색 처리(대표색 추출)
___1.3.4 손글씨 문자 인식
1.4 분석 도구 준비
___1.4.1 이 책에서 사용할 데이터 분석 도구
___1.4.2 실행 환경 설치 순서(CentOS 6)
___1.4.3 실행 환경 설치 순서(Mac OS X)
___1.4.4 실행 환경 설정 순서(Windows 7/8.1)
___1.4.5 IPython 사용법

▣ 02장: 최소제곱법 - 머신러닝 이론의 첫 걸음
2.1 다항식 근사와 최소제곱법에 의한 추정
___2.1.1 트레이닝 세트의 특징 변수와 목적 변수
___2.1.2 다항식 근사와 오차함수 설정
___2.1.3 오차함수를 최소화할 수 있는 조건
___2.1.4 예제 코드로 확인한다
___2.1.5 통계모델이라는 관점에서 최소제곱법이란
2.2 오버 피팅 검출
___2.2.1 트레이닝 셋과 테스트 셋
___2.2.2 테스트 셋으로 검증한 결과
___2.2.3 교차 검증을 통해 일반화 능력을 검증한다
___2.2.4 데이터 개수에 따른 오버 피팅 변화
2.3 부록 - 헤세행렬의 성질

▣ 03장: 최우추정법 - 확률을 사용한 추정 이론
3.1 확률 모델을 이용한다
___3.1.1 데이터 발생 확률 설정
___3.1.2 우도함수로 파라미터를 평가한다
___3.1.3 예제 코드로 확인한다
3.2 단순한 예로 설명한다
___3.2.1 정규분포의 파라메트릭 모델
___3.2.2 예제 코드로 확인한다
___3.2.3 추정량을 평가하는 방법(일치성과 불편성)
3.3 부록-표본평균ㆍ표본분산의 일치성과 불편성
___3.3.1 표본평균ㆍ표본분산의 일치성과 불편성 증명
___3.3.2 예제 코드로 확인한다

▣ 04장: 퍼셉트론 - 분류 알고리즘 기초
4.1 확률적 기울기 하강법 알고리즘
___4.1.1 평면을 분할하는 직선의 방정식
___4.1.2 오차함수를 사용하여 분류 결과를 평가한다
___4.1.3 기울기 벡터로 파라미터를 수정한다
___4.1.4 예제 코드로 확인한다
4.2 퍼셉트론을 기하학적으로 해석한다
___4.2.1 바이어스 항의 임의성과 알고리즘 수렴 속도
___4.2.2 퍼셉트론의 기하학적 해석
___4.2.3 바이어스 항의 기하학적인 의미

▣ 05장: 로지스틱 회귀와 ROC 곡선 - 학습 모델을 평가하는 방법
5.1 분류 문제에 최우추정법을 적용한다
___5.1.1 데이터 발생 확률 설정
___5.1.2 최우추정법으로 파라미터를 결정한다
___5.1.3 예제 코드로 확인한다
5.2 ROC 곡선으로 학습 모델을 평가한다
___5.2.1 로지스틱 회귀를 현실 문제에 적용한다
___5.2.2 ROC 곡선으로 성능 평가
___5.2.3 예제 코드로 확인한다
5.3 부록 - IRLS법 도출

▣ 06장: k-평균법 - 비지도 학습모델 기초
6.1 k-평균법을 통한 클러스터링과 그 응용
___6.1.1 비지도 학습모델 클러스터링
___6.1.2 k-평균법을 사용한 클러스터링
___6.1.3 이미지 데이터에 응용
___6.1.4 예제 코드로 확인한다
___6.1.5 k-평균법의 수학적 근거
6.2 게으른 학습모델로서의 k-최근접이웃
___6.2.1 k-최근접이웃으로 분류
___6.2.2 k-최근접이웃의 문제점

▣ 07장: EM 알고리즘 - 최우추정법에 의한 비지도 학습
7.1 베르누이 분포를 사용한 최우추정법
___7.1.1 손글씨 문자 합성 방법
___7.1.2 이미지 생성기와 최우추정법
7.2 혼합분포를 사용한 최우추정법
___7.2.1 혼합분포로 확률계산
___7.2.2 EM 알고리즘 절차
___7.2.3 예제 코드로 확인한다
___7.2.4 클러스터링으로 데이터를 해석한다
7.3 부록 - 손글씨 문자 데이터를 다운로드한다

▣ 08장: 베이즈 추정 - 데이터를 기반으로 확신을 더하는 방법
8.1 베이즈 추정 모델과 베이즈 정리
___8.1.1 베이즈 추정의 개념
___8.1.2 베이즈 정리 입문
___8.1.3 베이즈 추정으로 정규분포를 정한다: 파라미터 추정
___8.1.4 베이즈 추정으로 정규분포를 결정한다: 관측값의 분포를 추정
___8.1.5 예제 코드로 확인한다
8.2 베이즈 추정을 회귀분석에 응용
___8.2.1 파라미터의 사후분포 계산
___8.2.2 관측값의 분포를 추정
___8.2.3 예제 코드로 확인한다
8.3 부록-최우추정법과 베이즈 추정의 관계

본문중에서

머신러닝에 관심을 갖는 IT 개발자가 예상 외로 늘고 있는 것 아닌가, 하는 생각을 하게 된 것은 1년 전쯤이었습니다. 데이터 과학이나 딥러닝 급기야 인공지능까지 각 미디어가 선호하는 단어들이 넘쳐나는 상황에서 데이터 분석을 전문으로 하지 않는 일반 IT 개발자도 머신러닝 기술을 활용할 수 있을 것이라고 기대해 볼 수 있는 시대가 다가왔습니다. 이제는 '전문 지식이 없어도 사용할 수 있습니다'라고 광고하는 머신러닝 서비스도 생겨날 정도입니다.

하지만 여기에는 큰 함정이 존재합니다. 다양한 머신러닝 툴이나 라이브러리가 오픈소스로 제공되어 머신러닝 계산 처리를 누구나 실행할 수 있게 됐습니다. 데이터를 입력하고 프로그램을 실행하면 일단 결과는 나올 것입니다. 그렇지만 그 결과가 어떤 '의미'를 갖고 있는지 알 수 있을까요? 머신러닝 툴이 내어주는 결과를 업무에 활용하려면 그 툴이 어떤 알고리즘으로 동작하는지 알아야 툴이 내어준 결과물을 제대로 파악할 수 있겠지요.

이 책에서는 독자들이 머신러닝 기술을 업무에 활용할 것이라는 전제하에 머신러닝 알고리즘을 기본부터 설명합니다. 구체적인 예제를 통해 '어떤 사고 방식으로 무엇을 계산하는가'에 대하여 빠짐없이 설명합니다. 이렇게 차근차근 설명하여 머신러닝에서 데이터 과학에 이르기까지 독자들이 그 밑바탕부터 이해할 수 있게 돕는 것이 이 책의 목표입니다. 머신러닝 분야에는 다양한 알고리즘이 존재하지만 이들 알고리즘의 근본에는 '데이터의 모델화와 파라미터의 최적화'라는 사상이 공통으로 포함돼 있습니다. 이 책에서는 이러한 '사상'에 중점을 두고 각각의 수식이 포함한 의미를 가능한 한 쉽게 설명하려고 합니다. 이 사상을 이해한 후에는 딥러닝이나 신경 네트워크 등 이 책에서 다루지 않은 어려운 알고리즘도 겁낼 필요가 없을 것입니다.

머신러닝을 업무에 사용하기 위한 기획 작업을 지시받아 당황한 사람, 마케팅 분석 프로그램 개발 프로젝트에 갑자기 투입된 독사람 등 IT 업계에 몸담고 있는 필자의 지인들 중 이러한 상황에 처한 분들이 많아진 것을 보고 머신러닝에 관심을 갖는 IT 개발자가 예상 외로 늘고 있는 것 아닌가, 하고 필자가 생각하게 된 것 같습니다. 지금부터 머신러닝 기술을 이해하고 능숙하게 사용한다면 IT 개발자로서 새로운 인생을 개척할 기회를 잡게 될 것이 분명합니다. 그리고 무엇보다 머신러닝 기술은 IT 개발자의 지적 호기심과 탐구심을 채워줄 수 있을 만큼 많은 재미를 포함하고 있습니다. 이 책은 한 명이라도 더 많은 독자분에게 발판이 되어 드릴 것이며, 독자분이 이 책을 발판 삼아 머신러닝의 세계로 한 발 나아갈 수 있기를 기원합니다.

- 서문 중에서

저자소개

나카이 에츠지 [저] 신작알림 SMS신청 작가DB보기
생년월일 197104

나카이 에츠지는 1971년 4월 출생. 노벨 물리학상을 진정으로 꿈꾸며 이론물리학 연구에 몰두한 학생 시절, 대학 입시 교육에 열정을 기울인 예비학교 강사 시절을 지나 화려하게 변신해 외국계 벤더에서 리눅스 엔지니어를 생업으로 하기에 이르렀고, 미묘한 인연이 계속되어 유닉스/리눅스 서버와 인생을 같이 함.
그 후 리눅스 디스트리뷰터의 에반젤리스트를 거쳐서 현재는 미국계 IT 기업의 Cloud Solutions Architect로 활동함. 최근에는 머신 러닝을 비롯한 데이터 활용 기술의 기초를 세상에 알리기 위해 강연하거나 잡지 기고 및 서적 집필에도 주력하고 있음.

펼쳐보기
생년월일 -

초등학교 2학년 때 베이직으로 프로그램을 시작하여 중학교 시절에 MSX용 어셈블리어(z80) 프로그램을 습득했을 정도로 어릴 때부터 프로그래밍에 남다른 관심을 가졌다. 일본 호세이대학 경영학부 출신이며 어셈블리어로 게임을 제작할 정도로 독특한 캐리어를 지녔다. 가정용 멀티미디어 개발과 측정 장비 소프트웨어를 주로 개발하였다. “만들면서 배우는 OS 구조와 원리”(한빛미디어, 2005)를 집필하였다.

언론사 추천 및 수상내역

이 상품의 시리즈

(총 48권 / 현재구매 가능도서 47권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    8.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용