¿Ü±¹µµ¼
´ëÇб³Àç/Àü¹®¼Àû
±â¼ú°úÇÐ ÀϹÝ
2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.
Á¤°¡ |
120,000¿ø |
---|
120,000¿ø
3,600P (3%Àû¸³)
ÇÒÀÎÇýÅÃ | |
---|---|
Àû¸³ÇýÅà |
|
|
|
Ãß°¡ÇýÅÃ |
|
À̺¥Æ®/±âȹÀü
¿¬°üµµ¼
»óÇ°±Ç
ÀÌ»óÇ°ÀÇ ºÐ·ù
¸ñÂ÷
1 Probability and Statistics: An Introduction
2 Summarizing and Visualizing Data
3 Probability Basics and Random Variables
4 Probability Distributions
5 Hypothesis Testing and Confidence Intervals
6 Reconstructing Probability Distributions from Data
7 Regression
8 Classification: A Probabilistic View
9 Unsupervised Learning: A Probabilistic View
10 Discrete State Markov Processes
11 Probabilistic Inequalities and Approximations
References
Index
ÀúÀÚ¼Ò°³
»ý³â¿ùÀÏ | - |
---|
´º¿å ¿äũŸ¿î ÇÏÀÌÃ÷ÀÇ IBM T. J. ¿Ó½¼ ¸®¼Ä¡ ¼¾ÅÍÀÇ ¶Ù¾î³ ¿¬±¸ ȸ¿ø(DRSM)ÀÌ´Ù. 1993³â¿¡ IIT Kanpur¿¡¼ Çлç ÇÐÀ§¸¦ ¹Þ¾Ò°í, 1996³â¿¡ MIT¿¡¼ ¹Ú»ç ÇÐÀ§¸¦ ¹Þ¾Ò´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´× ºÐ¾ß¿¡¼ Æø³Ð°Ô ÀÏÇØ¿Ô°í, 400°³ ÀÌ»óÀÇ ³í¹®À» ÄÜÆÛ·±½º¿Í ÇмúÁö¿¡ ¹ßÇ¥ÇßÀ¸¸ç 80°³ ÀÌ»óÀÇ Æ¯Çã±ÇÀÌ ÀÖ´Ù. µ¥ÀÌÅÍ ¸¶À̴׿¡ °üÇÑ ±³°ú¼, ƯÀÌÄ¡ ºÐ¼®¿¡ °üÇÑ Æ÷°ýÀûÀΠåÀ» Æ÷ÇÔÇÑ 15±ÇÀÇ Ã¥À» Àú¼úÇϰųª ÆíÁýÇß´Ù. ƯÇãÀÇ »ó¾÷Àû °¡Ä¡ ´öºÐ¿¡ IBM¿¡¼ ¸¶½ºÅÍ ¹ß¸í°¡·Î ¼¼ ¹øÀ̳ª ÁöÁ¤µÆ´Ù. µ¥ÀÌÅÍ ½ºÆ®¸²ÀÇ »ý¹° Å×·¯¸®½ºÆ® À§Çù ŽÁö¿¡ ´ëÇÑ ¿¬±¸·Î IBM ±â¾÷»ó(2003)À» ¼ö»ó Çß°í, ÇÁ¶óÀ̹ö½Ã ±â¼ú¿¡ ´ëÇÑ °úÇÐÀûÀÎ °øÇåÀ¸·Î IBM ¿ì¼ö Çõ½Å»ó(2008)À» ¼ö»óÇß´Ù. µ¥ÀÌÅÍ ½ºÆ®¸² ¹× °íÂ÷¿øÀûÀÎ ÀÛ¾÷¿¡ ´ëÇÑ °¢°¢ÀÇ ÀÛ¾÷À» ÀÎÁ¤¹Þ¾Æ µÎ °³ÀÇ IBM ¿ì¼ö ±â¼ú ¼º°ú»ó(2009, 2015)À» ¼ö»óÇß´Ù. ÀÀÃà ±â¹Ý ÇÁ¶óÀ̹ö½Ã º¸Á¸ µ¥ÀÌÅÍ ¸¶À̴׿¡ ´ëÇÑ ¿¬±¸·Î EDBT 2014 Test of Time Award¸¦ ¼ö»óÇß´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¸¶ÀÌ´× ºÐ¾ß¿¡¼ ¿µÇâ·Â ÀÖ´Â ¿¬±¸ °øÇå¿¡ ´ëÇÑ µÎ °¡Áö ÃÖ°í»ó Áß ÇϳªÀÎ IEEE ICDM ¿¬±¸ °øÇå»ó(2015)À» ¼ö»óÇß´Ù. IEEE ºòµ¥ÀÌÅÍ ÄÜÆÛ·±½º(2014)ÀÇ ÃÑ°ý °øµ¿ ÀÇÀåÁ÷°ú, ACM CIKM ÄÜÆÛ·±½º(2015), IEEE ICDM ÄÜÆÛ·±½º(2015), ACM KDD ÄÜÆÛ·±½º(2016) ÇÁ·Î±×·¥ °øµ¿ ÀÇÀåÁ÷À» ¿ªÀÓÇß´Ù. 2004³âºÎÅÍ 2008³â±îÁö ¡¸IEEE Transactions on Knowledge and Data Engineering¡¹ÀÇ ºÎÆíÁýÀåÀ¸·Î ±Ù¹«Çß´Ù. ¡¸ACM Transactions on Knowledge Discovery from Data¡¹ÀÇ ºÎÆíÁýÀå, ¡¸IEEE Transactions on Big Data¡¹ÀÇ ºÎÆíÁýÀå, ¡¸Data Mining and Knowledge Discovery Journal¡¹°ú ¡¸ACM SIGKDD Exploration¡¹ÀÇ ÆíÁýÀå, ¡¸Knowledge and Information Systems Journal¡¹ÀÇ ºÎÆíÁýÀåÀÌ´Ù. SpringerÀÇ °£Ç๰ÀÎ ¡¸Lecture Notes on Social Networks¡¹ ÀÚ¹® À§¿øȸ¿¡¼ È°µ¿ÇÏ°í ÀÖÀ¸¸ç µ¥ÀÌÅÍ ¸¶À̴׿¡ °üÇÑ SIAM È°µ¿ ±×·ìÀÇ ºÎ»çÀåÀ» ¿ªÀÓÇß´Ù. ¡°contributions to knowledge discovery and data mining algorithms¡±¿¡ °üÇÑ SIAM, ACM, IEEEÀÇ Æç·Î¿ì´Ù.
ÆîÃ帱âÀúÀÚÀÇ ´Ù¸¥Ã¥
Àüüº¸±âÁÖ°£·©Å·
´õº¸±â»óÇ°Á¤º¸Á¦°ø°í½Ã
À̺¥Æ® ±âȹÀü
´ëÇб³Àç/Àü¹®¼Àû ºÐ¾ß¿¡¼ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥
ÆǸÅÀÚÁ¤º¸
»óÈ£ |
(ÁÖ)±³º¸¹®°í |
---|---|
´ëÇ¥ÀÚ¸í |
¾Èº´Çö |
»ç¾÷ÀÚµî·Ï¹øÈ£ |
102-81-11670 |
¿¬¶ôó |
1544-1900 |
ÀüÀÚ¿ìÆíÁÖ¼Ò |
callcenter@kyobobook.co.kr |
Åë½ÅÆǸž÷½Å°í¹øÈ£ |
01-0653 |
¿µ¾÷¼ÒÀçÁö |
¼¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù) |
±³È¯/ȯºÒ
¹ÝÇ°/±³È¯ ¹æ¹ý |
¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼ ½Åû °¡´É |
---|---|
¹ÝÇ°/±³È¯°¡´É ±â°£ |
º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É |
¹ÝÇ°/±³È¯ ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯ |
·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì |
»óÇ° Ç°Àý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½ |
¼ÒºñÀÚ ÇÇÇغ¸»ó |
·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© ó¸®µÊ ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀǼҺñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ |
¹è¼Û¾È³»
±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.
Ãâ°í°¡´É ½Ã°£ÀÌ ¼·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.
±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.
¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.