°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (44,650¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (32,900¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (37,600¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

Calculus Early Transcendentals (Korea Edition)

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

ÆǸÅÁö¼ö 84
?
ÆǸÅÁö¼ö¶õ?
»çÀÌÆ®ÀÇ ÆǸŷ®¿¡ ±â¹ÝÇÏ¿© ÆǸŷ® ÃßÀ̸¦ ¹Ý¿µÇÑ ÀÎÅÍÆÄÅ© µµ¼­¿¡¼­ÀÇ µ¶¸³ÀûÀÎ ÆǸŠÁö¼öÀÔ´Ï´Ù. ÇöÀç °¡Àå Àß Æȸ®´Â »óÇ°¿¡ °¡ÁßÄ¡¸¦ µÎ¾ú±â ¶§¹®¿¡ ½ÇÁ¦ ´©Àû ÆǸŷ®°ú´Â ´Ù¼Ò Â÷ÀÌ°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÆǸŷ® ¿Ü¿¡µµ ´Ù¾çÇÑ °¡ÁßÄ¡·Î ±¸¼ºµÇ¾î ÃÖ±ÙÀÇ À̽´µµ¼­ È®Àνà À¯¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇØ´ç Áö¼ö´Â ¸ÅÀÏ °»½ÅµË´Ï´Ù.
Close
°øÀ¯Çϱâ
Á¤°¡

47,000¿ø

  • 47,000¿ø

    2,350P (5%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
¹è¼ÛÁ¤º¸
  • Ç°Àý 
  • ¹«·á¹è¼Û
ÁÖ¹®¼ö·®
°¨¼Ò Áõ°¡
  • À̺¥Æ®/±âȹÀü

  • ¿¬°üµµ¼­

  • »óÇ°±Ç

AD

¸ñÂ÷

Preface x
A Tribute to James Stewart xxii
About the Authors xxiii
Technology in the Ninth Edition xxiv
To the Student xxv
Diagnostic Tests xxvi

A Preview of Calculus

1. Functions and Models
1.1 Inverse Functions and Logarithms 8

2. Limits and Derivatives
2.1 The Limit of a Function 32
2.2 Calculating Limits Using the Limit Laws 44
2.3 The Precise Definition of a Limit 54
2.4 Continuity 64
2.5 Limits at Infinity; Horizontal Asymptotes 76
2.6 Derivatives and Rates of Change 89
2.7 The Derivative as a Function 102

3. Differentiation Rules
3.1 Derivatives of Polynomials and Exponential Functions 124
3.2 The Product and Quotient Rules 135
3.3 Derivatives of Trigonometric Functions 141
3.4 The Chain Rule 149
3.5 Implicit Differentiation 159
3.6 Derivatives of Logarithmic and Inverse Trigonometric Functions 167
3.7 Linear Approximations and Differentials 175
3.8 Hyperbolic Functions 183

4. Applications of Differentiation
4.1 Maximum and Minimum Values 202
4.2 The Mean Value Theorem 212
4.3 What Derivatives Tell Us about the Shape of a Graph 218
4.4 Indeterminate Forms and I¡¯Hospital¡®s Rule 231
4.5 Optimization Problems 242
4.6 Antiderivatives 257

5. Integrals
5.1 The Area and Distance Problems 274
5.2 The Definite Integral 286
5.3 The Fundamental Theorem of Calculus 301
5.4 Indefinite Integrals and the Net Change Theorem 3 11
5.5 The Substitution Rule 321

6. Applications of Integration
6.1 Areas Between Curves 338
6.2 Volumes 348
6.3 Volumes by Cylindrical Shells 362
6.4 Average Value of a Function 369

7. Techniques of Integration
7.1 Integration by Parts 382
7.2 Trigonometric Integrals 389
7.3 Trigonometric Substitution 396
7.4 Integration of Rational Functions by Partial Fractions 403
7.5 Improper Integrals 413

8. Further Applications of Integration
8.1 Arc Length 430
8.2 Area of a Surface of Revolution 437
8.3 Applications to Physics and Engineering 446
8.4 Applications to Economics and Biology 457

9. Parametric Equations and Polar Coordinates
9.1 Curves Defined by Parametric Equations 468
9.2 Calculus with Parametric Curves 479
9.3 Polar Coordinates 490
9.4 Calculus in Polar Coordinates 500
9.5 Conic Sections 508

10. Sequences, Series, and Power Series
10.1 Sequences 524
10.2 Series 538
10.3 The Integral Test and Estimates of Sums 551
10.4 The Comparison Tests 560
10.5 Alternating Series and Absolute Convergence 565
10.6 The Ratio and Root Tests 576
10.7 Power Series 579
10.8 Representations of Functions as Power Series 584
10.9 Taylor and Maclaurin Series 593
10.10 Applications of Taylor Polynomials 610

11. Vectors and the Geometry of Space
11.1 Three-Dimensional Coordinate Systems 628
11.2 Vectors 634
11.3 The Dot Product 645
11.4 The Cross Product 653
11.5 Equations of Lines and Planes 662
11.6 Cylinders and Quadric Surfaces 673

12. Vector Functions
12.1 Vector Functions and Space Curves 688
12.2 Derivatives and Integrals of Vector Functions 696
12.3 Arc Length and Curvature 702
12.4 Motion in Space: Velocity and Acceleration 714

13. Partial Derivatives
13.1 Functions of Several Variables 732
13.2 Limits and Continuity 749
13.3 Partial Derivatives 759
13.4 Tangent Planes and Linear Approximations 772
13.5 The Chain Rule 783
13.6 Directional Derivatives and the Gradient Vector 792
13.7 Maximum and Minimum Values 806
13.8 Lagrange Multipliers 818

14. Multiple Integrals
14.1 Double Integrals over Rectangles 836
14.2 Double Integrals over General Regions 849
14.3 Double Integrals in Polar Coordinates 860
14.4 Applications of Double Integrals 867
14.5 Surface Area 877
14.6 Triple Integrals 880
14.7 Triple Integrals in Cylindrical Coordinates 893
14.8 Triple Integrals in Spherical Coordinates 900
14.9 Change of Variables in Multiple Integrals 907

15. Vector Calculus
15.1 Vector Fields 922
15.2 Line Integrals 929
15.3 The Fundamental Theorem for Line Integrals 942
15.4 Green¡¯s Theorem 952
15.5 Curl and Divergence 959
15.6 Parametric Surfaces and Their Areas 968
15.7 Surface Integrals 980
15.8 Stokes' Theorem 993
15.9 The Divergence Theorem 999

Appendixes
A Trigonometry A2
B Proofs of Theorems A14
C Answers to Odd-Numbered Exercises A26

Index A87

Ã¥¼Ò°³

º»¼­´Â ¡°Calculus: Early Transcendentals, 9th Edition(Á¦9ÆÇ)¡±ÀÇ ³»¿ëÀ» Çѱ¹ÀÇ ±³À°°úÁ¤¿¡ ¸ÂÃç ÇÊ¿äÇÑ ºÎºÐ¸¸À» ¾ö¼±, Ãà¾àÇÏ¿© Ãâ°£ÇÑ ¡®KOREA EDITION¡¯ÀÌ´Ù.

ÀÌ¿¡ µû¶ó ¿ø¼­(Calculus: Early Transcendentals, 9th Edition)¿¡ ¼ö·ÏµÈ ³»¿ë Áß ¹ÌºÐ¹æÁ¤½Ä(CHAPTER 9. Differential Equations) µî ÀϺΠChapter ¹× Section(sub-Chapter)Àº À̹ø KOREA EDITION¿¡ ¼ö·ÏµÇ¾î ÀÖÁö ¾Ê¾ÒÀ½À» Âü°íÇϱ⠹ٶõ´Ù. ¿ø¼­ÀÇ ³»¿ë Áß KOREA EDITION¿¡¼­ ¼ö·ÏÀÌ Á¦¿ÜµÈ ³»¿ëÀº ´ÙÀ½°ú °°´Ù.

CHAPTER 1. Functions and Models
1.1. Four Ways to Represent a Function
1.2. Mathematical Models: A Catalog of Essential Functions
1.3. New Functions from Old Functions
1.4. Exponential Functions

CHAPTER 2. Limits and Derivatives
2.1. The Tangent and Velocity Problems

CHAPTER 3. Differentiation Rules
3.7. Rates of Change in the Natural and Social Sciences
3.8. Exponential Growth and Decay
3.9. Related Rates

CHAPTER 4. Applications of Differentiation
4.5. Summary of Curve Sketching
4.6. Graphing with Calculus and Technology
4.8. Newton's Method

CHAPTER 6. Applications of Integration
6.4. Average Value of Function + Applied Projects

CHAPTER 7. Techniques of Integration
7.5. Strategy for Integration
7.6. Integration Using Tables and Technology + Discovery Project
7.7. Approximate Integration

CHAPTER 8. Further Applications of Integration
8.5. Probability

CHAPTER 9. Differential Equations

CHAPTER 10. Parametric Equations and Polar Coordinates
10.6. Conic Sections in Polar Coordinates

CHAPTER 11. Sequences, Series, and Power Series
11.7. Strategy for Testing Series

CHAPTER 16. Vector Calculus
16.10. Summary

Appendixes
A. Numbers, Inequalties, and Absolute Values
B. Coordinate Geometry and Lines
C. Graphs of Second-Degree Equations
E. Sigma Notation
G. The Logarithm Defined as an Integral

ÀúÀÚ¼Ò°³

Daniel Clegg [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

ÀúÀÚÀÇ ´Ù¸¥Ã¥

Àüüº¸±â
Saleem Watson [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

James Stewart [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

´ëÇб³Àç/Àü¹®¼­Àû ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

    ¸®ºä

    0.0 (ÃÑ 0°Ç)

    100ÀÚÆò

    ÀÛ¼º½Ã À¯ÀÇ»çÇ×

    ÆòÁ¡
    0/100ÀÚ
    µî·ÏÇϱâ

    100ÀÚÆò

    10.0
    (ÃÑ 0°Ç)

    ÆǸÅÀÚÁ¤º¸

    • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

    »óÈ£

    (ÁÖ)±³º¸¹®°í

    ´ëÇ¥ÀÚ¸í

    ¾Èº´Çö

    »ç¾÷ÀÚµî·Ï¹øÈ£

    102-81-11670

    ¿¬¶ôó

    1544-1900

    ÀüÀÚ¿ìÆíÁÖ¼Ò

    callcenter@kyobobook.co.kr

    Åë½ÅÆǸž÷½Å°í¹øÈ£

    01-0653

    ¿µ¾÷¼ÒÀçÁö

    ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

    ±³È¯/ȯºÒ

    ¹ÝÇ°/±³È¯ ¹æ¹ý

    ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

    ¹ÝÇ°/±³È¯°¡´É ±â°£

    º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
    ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

    ¹ÝÇ°/±³È¯ ºñ¿ë

    º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

    ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

    ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

    ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

    ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

    ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

    ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

    »óÇ° Ç°Àý

    °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

    ¼ÒºñÀÚ ÇÇÇغ¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

    ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

    ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    ¹è¼Û¾È³»

    • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

    • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

    • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

    • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

    • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë