¿Ü±¹µµ¼
´ëÇб³Àç/Àü¹®¼Àû
ÀÚ¿¬°úÇÐ/¼ø¼ö°úÇаè¿
2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.
Á¤°¡ |
52,000¿ø |
---|
52,000¿ø
2,600P (5%Àû¸³)
ÇÒÀÎÇýÅÃ | |
---|---|
Àû¸³ÇýÅà |
|
|
|
Ãß°¡ÇýÅÃ |
|
À̺¥Æ®/±âȹÀü
¿¬°üµµ¼
»óÇ°±Ç
ÀÌ»óÇ°ÀÇ ºÐ·ù
¸ñÂ÷
Preface | p. ix |
Standard Notations | p. xii |
Some Underlying Geometric Notions | p. 1 |
Homotopy and Homotopy Type | p. 1 |
Cell Complexes | p. 5 |
Operations on Spaces | p. 8 |
Two Criteria for Homotopy Equivalence | p. 10 |
The Homotopy Extension Property | p. 14 |
The Fundamental Group | p. 21 |
Basic Constructions | p. 25 |
Paths and Homotopy | p. 25 |
The Fundamental Group of the Circle | p. 29 |
Induced Homomorphisms | p. 34 |
Van Kampen's Theorem | p. 40 |
Free Products of Groups | p. 41 |
The van Kampen Theorem | p. 43 |
Applications to Cell Complexes | p. 50 |
Covering Spaces | p. 56 |
Lifting Properties | p. 60 |
The Classification of Covering Spaces | p. 63 |
Deck Transformations and Group Actions | p. 70 |
Additional Topics | |
Graphs and Free Groups | p. 83 |
K(G,1) Spaces and Graphs of Groups | p. 87 |
Homology | p. 97 |
Simplicial and Singular Homology | p. 102 |
[Delta]-Complexes | p. 102 |
Simplicial Homology | p. 104 |
Singular Homology | p. 108 |
Homotopy Invariance | p. 110 |
Exact Sequences and Excision | p. 113 |
The Equivalence of Simplicial and Singular Homology | p. 128 |
Computations and Applications | p. 134 |
Degree | p. 134 |
Cellular Homology | p. 137 |
Mayer-Vietoris Sequences | p. 149 |
Homology with Coefficients | p. 153 |
The Formal Viewpoint | p. 160 |
Axioms for Homology | p. 160 |
Categories and Functors | p. 162 |
Additional Topics | |
Homology and Fundamental Group | p. 166 |
Classical Applications | p. 169 |
Simplicial Approximation | p. 177 |
Cohomology | p. 185 |
Cohomology Groups | p. 190 |
The Universal Coefficient Theorem | p. 190 |
Cohomology of Spaces | p. 197 |
Cup Product | p. 206 |
The Cohomology Ring | p. 211 |
A Kunneth Formula | p. 218 |
Spaces with Polynomial Cohomology | p. 224 |
Poincare Duality | p. 230 |
Orientations and Homology | p. 233 |
The Duality Theorem | p. 239 |
Connection with Cup Product | p. 249 |
Other Forms of Duality | p. 252 |
Additional Topics | |
Universal Coefficients for Homology | p. 261 |
The General Kunneth Formula | p. 268 |
H-Spaces and Hopf Algebras | p. 281 |
The Cohomology of SO(n) | p. 292 |
Bockstein Homomorphisms | p. 303 |
Limits and Ext | p. 311 |
Transfer Homomorphisms | p. 321 |
Local Coefficients | p. 327 |
Homotopy Theory | p. 337 |
Homotopy Groups | p. 339 |
Definitions and Basic Constructions | p. 340 |
Whitehead's Theorem | p. 346 |
Cellular Approximation | p. 348 |
CW Approximation | p. 352 |
Elementary Methods of Calculation | p. 360 |
Excision for Homotopy Groups | p. 360 |
The Hurewicz Theorem | p. 366 |
Fiber Bundles | p. 375 |
Stable Homotopy Groups | p. 384 |
Connections with Cohomology | p. 393 |
The Homotopy Construction of Cohomology | p. 393 |
Fibrations | p. 405 |
Postnikov Towers | p. 410 |
Obstruction Theory | p. 415 |
Additional Topics | |
Basepoints and Homotopy | p. 421 |
The Hopf Invariant | p. 427 |
Minimal Cell Structures | p. 429 |
Cohomology of Fiber Bundles | p. 431 |
The Brown Representability Theorem | p. 448 |
Spectra and Homology Theories | p. 452 |
Gluing Constructions | p. 456 |
Eckmann-Hilton Duality | p. 460 |
Stable Splittings of Spaces | p. 466 |
The Loopspace of a Suspension | p. 470 |
The Dold-Thom Theorem | p. 475 |
Steenrod Squares and Powers | p. 487 |
Appendix | p. 519 |
Topology of Cell Complexes | p. 519 |
The Compact-Open Topology | p. 529 |
Bibliography | p. 533 |
Index | p. 539 |
Table of Contents provided by Syndetics. All Rights Reserved. |
Ã¥¼Ò°³
In most mathematics departments at major universities one of the three or four basic first-year graduate courses is in the subject of algebraic topology. This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature of the book is the inclusion of many optional topics which are not usually part of a first course due to time constraints, and for which elementary expositions are sometimes hard to find. Among these are: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and a full exposition of Steenrod squares and powers. Researchers will also welcome this aspect of the book.
ÀúÀÚ¼Ò°³
»ý³â¿ùÀÏ | - |
---|
ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.
ÁÖ°£·©Å·
´õº¸±â»óÇ°Á¤º¸Á¦°ø°í½Ã
À̺¥Æ® ±âȹÀü
´ëÇб³Àç/Àü¹®¼Àû ºÐ¾ß¿¡¼ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥
ÆǸÅÀÚÁ¤º¸
»óÈ£ |
(ÁÖ)±³º¸¹®°í |
---|---|
´ëÇ¥ÀÚ¸í |
¾Èº´Çö |
»ç¾÷ÀÚµî·Ï¹øÈ£ |
102-81-11670 |
¿¬¶ôó |
1544-1900 |
ÀüÀÚ¿ìÆíÁÖ¼Ò |
callcenter@kyobobook.co.kr |
Åë½ÅÆǸž÷½Å°í¹øÈ£ |
01-0653 |
¿µ¾÷¼ÒÀçÁö |
¼¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù) |
±³È¯/ȯºÒ
¹ÝÇ°/±³È¯ ¹æ¹ý |
¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼ ½Åû °¡´É |
---|---|
¹ÝÇ°/±³È¯°¡´É ±â°£ |
º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É |
¹ÝÇ°/±³È¯ ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯ |
·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì |
»óÇ° Ç°Àý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½ |
¼ÒºñÀÚ ÇÇÇغ¸»ó |
·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© ó¸®µÊ ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀǼҺñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ |
¹è¼Û¾È³»
±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.
Ãâ°í°¡´É ½Ã°£ÀÌ ¼·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.
±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.
¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.