|
|
|
|
|
|
|
¸ñÂ÷ |
|
Á¦1Àå ¼Ò °³
Á¦2Àå ¼öÇÐÀû ±âÃÊ
2.1 º¤ÅÍ(Vector) 5 2.2 Çà·Ä(Matrix) 6
2.3 ¿¬¸³ÀÏÂ÷¹æÁ¤½Ä Çعý 16 2.4 Çà·Ä°ú º¤ÅÍ 22
2.5 º¼·ÏÁýÇÕ(convex set) 24
£¿£¿ ¿¬½À¹®Á¦ 2 27
Á¦3Àå ¼±Çü°èȹ¹ý(Linear Programming) ¹®Á¦
3.1 °³¿ä 31 3.2 ¼±Çü°èȹ¹ý ¹®Á¦ÀÇ ¿¹ 32
3.2.1 ÀÚ¿øÇÒ´ç¹®Á¦ 33 3.2.2 ¿µ¾ç¼·Ãë¹®Á¦(diet problem) 34
3.2.3 ¼ö¼Û¹®Á¦(transportation problem) 36
£¿£¿ ¿¬½À¹®Á¦ 3 39
Á¦4Àå ¼±Çü°èȹ¹ý ¹®Á¦ÀÇ ±âÇÏÇÐÀû Çؼ®
4.1 µî½Ä°ú ºÎµî½ÄÀÇ ±âÇÏÇÐÀû Ç¥Çö 43 4.2 ½ÇÇà°¡´É¿ª 44
£¿£¿ ¿¬½À¹®Á¦ 4 51
Á¦5Àå ÀϹÝÀû ¼±Çü°èȹ¹ýÀÇ ÀÌ·Ð
5.1 ¼±Çü°èȹ¹ý ¸ðÇü 53 5.2 ¼±Çü°èȹ¹ýÀÇ Æ¯¼º°ú Á¤¸® 55
5.3 ½ÇÇà°¡´É±âÀúÇØ ¿¬»ê(algorithm) 63
£¿£¿ ¿¬½À¹®Á¦ 5 70
Á¦6Àå ´Üü¹ý(Ó¤ô÷Ûö; simplex)ÀÇ ÀýÂ÷
6.1 °³³ä ¼Ò°³ 73 6.2 °è»êÀýÂ÷ 80
6.3 Àΰøº¯¼ö(Artificial Variables) 86 6.4 Ư¼öÇØ 94
6.4.1 ´Ù¼öÃÖÀûÇØ(alternative optimal solution) 94
6.4.2 ¹«ÇÑÇØ(unbounded solutions) 96
6.4.3 ½ÇÇàºÒ°¡´ÉÇØ(infeasible solution) 97
6.4.4 ¿©ºÐ Á¦¾à½ÄÀÇ ¹®Á¦(redundant constraint) 99
6.4.5 ºñÁ¤º¯¼ö(ÞªïÒܨâ¦;unrestricted variables) 100
6.5 Á¤±Ô´Ùüǥ(ïáЮӤô÷øú; canonical tableau) 101
£¿£¿ ¿¬½À¹®Á¦ 6 107
Á¦7Àå Åðȹ®Á¦(Degenerate Problem)
7.1 Åðȹ®Á¦ Á¢±Ù¹æ¹ý 111 7.2 ÇعýÀýÂ÷ 113
£¿£¿ ¿¬½À¹®Á¦ 7 118
Á¦8Àå ¼öÁ¤´Üü¹ý(Revised Simplex Method)
8.1 °³¿ä 121 8.2 Àΰøº¯¼ö°¡ ¾ø´Â ¼öÁ¤´Üü¹ý 128
8.3 Àΰøº¯¼ö°¡ ÀÖ´Â ¼öÁ¤´Üü¹ý 133
8.4 »óÇϺÐÇعæ¹ý(LU decomposition method) 138
£¿£¿ ¿¬½À¹®Á¦ 8 145
Á¦9Àå ½Ö´ë¹®Á¦(Duality Problems)
9.1 °³¿ä 149 9.2 ¿ø¹®Á¦¿Í ½Ö´ë¹®Á¦ÀÇ Àüȯ 155
9.3 ¿øº¯¼ö¿Í ½Ö´ëº¯¼öÀÇ ÀÇ¹Ì 161 9.4 ½Ö´ë´Üü¹ý(dual simlex) 165
9.5 Ãà¼Ò´Üü¹ý 167
9.6 ¿ø½Ö´ë ´Üü¹ý(primal-dual simplex method) 170
£¿£¿ ¿¬½À¹®Á¦ 9 173
Á¦10Àå °¨µµºÐ¼®(Sensitivity Analysis)
10.1 ºñ¿ë°è¼ö(cj)ÀÇ º¯µ¿ 183 10.2 ¿ìº¯Ä¡(bi)ÀÇ º¯µ¿ 186
10.3 Á¦¾à½Ä °è¼ö aijÀÇ º¯µ¿ 188
10.3.1 arc°¡ ±âÀúÀÇ ÇÑ ±âÁØÁ¡ÀÏ °æ¿ì 190
10.3.2. arc°¡ ±âÀú¿¿¡ ¼ÓÇÏ¸é¼ ±âÁØÁ¡ÀÌ ¾Æ´Ñ °æ¿ì 196
10.3.3. akj°¡ ±âÀú¿¿¡ ¼ÓÇÏÁö ¾Ê´Â °æ 199
£¿£¿ ¿¬½À¹®Á¦ 10 201
Á¦11Àå ¸ð¼ö°èȹ¹ý(Parametric Linear Programming)
11.1 ¸ñÀûÇÔ¼öÀÇ °è¼öºÐ¼® 203 11.2 ¿ìº¯Ç×ÀÇ °è¼öºÐ¼® 210
11.3 »õ·Î¿î Á¦¾à½Ä 217
£¿£¿ ¿¬½À¹®Á¦ 11 221
Á¦12Àå »óÇѺ¯¼ö¹®Á¦(Bounded Variables Problems)
12.1 ´Ü¼ø»óÇѹ®Á¦(Simple Upper Bound Problem) 225
12.2 ÀϹݻóÇѹ®Á¦(Generalized Upper Bound Problem) 235
£¿£¿ ¿¬½À¹®Á¦ 12 247
Á¦13Àå ´ëÇü¼±Çü°èȹ¹ýÀÇ ¿ø¸®
(Decomposition Principle for Large Scale Linear Programming)
13.1 ºÐÇØ¿ø¸® 251 13.2 ºÐÇØ¿¬»êÀýÂ÷ 258
£¿£¿ ¿¬½À¹®Á¦ 13 271
Á¦14Àå ¼ö¼Û ¹× ÇÒ´ç¹®Á¦
14.1 ÀϹÝÀû ¼ö¼Û¹®Á¦ 275
14.2 ÃÖÃÊ ½ÇÇà°¡´É ±âÀúÇظ¦ ±¸ÇÏ´Â ÀýÂ÷ 281
14.2.1 ºÏ¼¸ð¼¸®¹ý(Northwest Corner Rule 281
14.2.2 Ç¥ÃÖ¼Ò°¡¹ý(Table Minimum Method) 282
14.2.3 º¸°Ö±Ù»ç¹ý(Vogel Approximation Method) 282
14.2.4 ·µ¼¿±Ù»ç¹ý(Russel's Approximation Method) 283
14.3 Â÷ÈÄ ½ÇÇà°¡´ÉÇØ ±¸ÇÏ´Â ÀýÂ÷ 287 14.4 ¼ö¼Û¹®Á¦ ¿¬»êÀýÂ÷ 289
14.5 Ư¼ö¼ö¼Û¹®Á¦ 294
14.5.1 Åðȼö¼Û¹®Á¦ 294
14.5.2 ´Ù¼öÃÖÀûÇØ 295
14.6 °¨µµºÐ¼® 296
14.7 ºñ±ÕÇü ¼ö¼Û¹®Á¦ 298
14.8 ÇÒ´ç¹®Á¦ 299
14.9 Áß°³¼ö¼Û¹®Á¦(Transshipment Problem) 306
14.9.1 ÃÖ¼Ò°¡ ¹æ¹ý 308
14.9.2 È®ÀåÇ¥ ¹æ¹ý 309
£¿£¿ ¿¬½À¹®Á¦ 14 312
Á¦15Àå Á¤¼ö°èȹ¹ý(ïÚâ¦ÍªüñÛö; Integer Programming)
15.1 ¼Ò°³ 317
15.2 Àý´Ü¸é¹ý(cutting plane method) 318
15.2.1 ºÐ¼ö¹ý(fractional algorithm) 319
15.2.2 ÀüÁ¤¼ö¹ý(all integer method) 324
15.2.3 ¿øÀüÁ¤¼ö¹ý(primal all integer method) 328
15.2.4 È¥ÇÕÁ¤¼ö°èȹ¹ý(mixed integer programming) 331
15.3 ºÐÁöÇÑ°è¹ý(branch and bound method) 336
15.4 Çà»ó¹®Á¦(Traveling Salesman Problem) 341
15.5 ¹è³¶¹®Á¦(Knapsack Problem) 348
£¿£¿ ¿¬½À¹®Á¦ 15 353
Á¦16Àå ¸ñÇ¥°èȹ¹ý(ÙÍøöͪüñÛö;Goal Programming)
16.1 ¼Ò°³ 361 16.2 ¸ñÇ¥°èȹ¹ý ¸ðÇü ±¸¼º 362
16.3 ±âÇÏÇÐÀû Çؼ® 364 16.4 ¸ñÇ¥°èȹ¹ýÀÇ ´Üü¹ý 365
16.5 ¸ñÇ¥°èȹ¹ý ¸ðÇüÀÇ Ç¥Çö 369 16.6 °¨µµºÐ¼® 370
16.7 ¸ñÇ¥°èȹ¹ýÀÇ ½Ö´ë´Üü¹ý 373
£¿£¿ ¿¬½À¹®Á¦ 16 375
Á¦17Àå ³×Æ®¿öÅ©(Network)
17.1 ÃִܳëÁ¤¹®Á¦(shortest route problem) 381
17.2 ÃÖÀå³ëÁ¤¹®Á¦(longest route problem) 385
£¿£¿ ¿¬½À¹®Á¦ 17 389
Á¦18Àå ´Ù¸ñÀû¼±Çü°èȹ¹ý
18.1 ´Ù¸ñÀû ¹®Á¦ 391
£¿£¿ ¿¬½À¹®Á¦ 18 399
Á¦19Àå °ÔÀÓÀ̷аú ¼±Çü°èȹ¹ý
19.1 ÀÌÀοµÇÕ(ì£ìÑçÍùê)°ÔÀÓ 401 19.2 ¼±Çü°èȹ¹ý ¸ðÇü 406
£¿£¿ ¿¬½À¹®Á¦ 19 410
Á¦20Àå ¼±Çü°èȹ¹ýÀÇ ÀϹÝÀû ÀÀ¿ë
20.1 ¿ø·á¹èÇÕ ¹®Á¦ 413 20.2 »ý»êÀÏÁ¤ ¹× Àç°í°ü¸® ¹®Á¦ 414
20.3 Àç´Ü¹®Á¦(the trim problem) 421
20.4 ³³Å²Ã³¸®¹®Á¦(The caterer problem) 422
20.5 »ê¾÷°£ ÆǸŹ®Á¦(inter industry problem) 423
20.6 »ý»ê ¹× Á¶¸³ ¹®Á¦(Assembly balancing) 428
20.7 ÈÇÐÁ¦Ç° »ý»ê¹®Á¦(fluid blending schedule) 429
20.8 ÀηÂÀÏÁ¤°èȹ(manpower scheduling) 430
20.9 ±â°èÀÏÁ¤°èȹ(machine scheduling problem) 432
20.10 ÅõÀÚ¹®Á¦(investment problem) 433
£¿£¿ ¿¬½À¹®Á¦ 20 436
Á¦21Àå KHACHANÀÇ Å¸¿øü °è»ê¹ý(öëêô÷ ͪߩÛö; Ellipsoid Algorithms)
21.1 ¼Ò°³ 449 21.2 ¿ÏÀü ¼±ÇüºÎµî½Äü°èÀÇ ÀÌ·Ð 444
21.3 ¼±Çü°èȹ¹ý 452
£¿£¿ ¿¬½À¹®Á¦ 21 458
Á¦22Àå KARMARKARÀÇ ³»ºÎÁ¡ °è»ê¹ý(ҮݻïÇ Íªß©Ûö; Interior Point Algorithm)
22.1 ¼Ò°³ 459 22.2 ³»ºÎÁ¡ ¿¬»ê¹ýÀÇ °³³ä 462
22.3 KarmarkarÀÇ »ç¿µ¹ý(ÞÒç¯Ûö) 471 22.4 Karmarkar Á¤±ÔÇüÀ¸·ÎÀÇ Àüȯ 480
22.5 ¾ÆÇÉôµµ ¿¬»ê¹ý(Affine Scaling Algorithm) 486
22.6 ±âŸ ³»ºÎÁ¡ ¹æ¹ý 493
£¿£¿ ¿¬½À¹®Á¦ 22 503
÷ºÎ 22.1 Á÷±³»ç¿µ(òÁÎßÞÒç¯; orthogonal projection) 506
÷ºÎ 22.2 »ç¿µÇà·Ä(ÞÒç¯ú¼Öª; projection matrix) 507
÷ºÎ 22.3 ¾ÆÇɺ¯È¯(affine otransformation)) 509 |
|
|
|
ÀúÀÚ
|
|
±èÃ濵
À°±º»ç°üÇб³ Á¹¾÷ ÀÌÇлç(1963), Naval post Graduate School Á¹¾÷, OR/SA ¼®»ç(1977), Arizona State University Á¹¾÷, »ê¾÷°øÇÐ ¹Ú»ç(1983), University of Iowa ±³È¯±³¼ö(1990), ±¹¹æ´ëÇб³ ±³¼ö(1983-2000), ÇöÀç´Â Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø(KISTI) Àü¹®¿¬±¸À§¿ø, ±¹¹æ´ëÇб³ ¸í¿¹±³¼ö. Àú¼·Î´Â 'ÅëÇվȺ¸Àü·«°ú ±¹¹æ°úÇÐ.Á¤º¸', '³×Æ®¿öÅ© À̷аú ÀÀ¿ë', '±º»ç OR À̷аú ÀÀ¿ë', 'ÀüÀ￵¿õµéÀÇ À̾߱â'(°í´ë µ¿¾çÆí), 'ÀüÀ￵¿õµéÀÇ À̾߱â'(°í´ë ¼¾çÆí) µîÀÌ ÀÖ´Ù.
|
³×Æ®¿öÅ© À̷аú ÀÀ¿ë | ±èÃ濵 | µÎ³²
¸ðµç°ÍÀÌ ¿¬°áµÇ´Â µðÁöÅÐ ¼¼»ó | ±èÃ濵 | ¼¿ï½Ã¸³´ëÇб³ÃâÆǺÎ
|
|
|
|
|
|
|
Ãâ°í¾È³» |
|
|
Ãâ°í¶õ ÀÎÅÍÆÄÅ© ¹°·ùâ°í¿¡¼ µµ¼°¡ Æ÷ÀåµÇ¾î ³ª°¡´Â ½ÃÁ¡À» ¸»Çϸç, ½ÇÁ¦ °í°´´Ô²²¼ ¼ö·ÉÇϽô ½Ã°£Àº »óÇ°Áغñ¿Ï·áÇØ Ãâ°íÇÑ ³¯Â¥ + Åùè»ç ¹è¼ÛÀÏÀÔ´Ï´Ù. |
|
ÀÎÅÍÆÄÅ© µµ¼´Â ¸ðµç »óÇ°ÀÇ Àç°í°¡ ÃæÁ·ÇÒ ½Ã¿¡ ÀÏ°ý Ãâ°í¸¦ ÇÕ´Ï´Ù. |
|
ÀϺΠÀç°í¿¡ ´ëÇÑ Ãâ°í°¡ ÇÊ¿äÇÒ ½Ã¿¡´Â ´ã´çÀÚ¿¡°Ô Á÷Á¢ ¿¬¶ôÇϽðųª, °í°´¼¾ÅÍ(°í°´¼¾ÅÍ(1577-2555)·Î ¿¬¶ôÁֽñ⠹ٶø´Ï´Ù. |
|
¹è¼Ûºñ ¾È³» |
|
|
ÀÎÅÍÆÄÅ© µµ¼ ´ë·®±¸¸Å´Â ¹è¼Û·á°¡ ¹«·áÀÔ´Ï´Ù. |
|
´Ü, 1°³ÀÇ »óÇ°À» ´Ù¼öÀÇ ¹è¼ÛÁö·Î ÀÏ°ý ¹ß¼Û½Ã¿¡´Â 1°³ÀÇ ¹è¼ÛÁö´ç 2,000¿øÀÇ ¹è¼Ûºñ°¡ ºÎ°úµË´Ï´Ù. |
¾Ë¾ÆµÎ¼¼¿ä! |
|
|
°í°´´Ô²²¼ ÁÖ¹®ÇϽŠµµ¼¶óµµ µµ¸Å»ó ¹× ÃâÆÇ»ç »çÁ¤¿¡ µû¶ó Ç°Àý/ÀýÆÇ µîÀÇ »çÀ¯·Î Ãë¼ÒµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
Åùè»ç ¹è¼ÛÀÏÀÎ ¼¿ï ¹× ¼öµµ±ÇÀº 1~2ÀÏ, Áö¹æÀº 2~3ÀÏ, µµ¼, »ê°£, ±ººÎ´ë´Â 3ÀÏ ÀÌ»óÀÇ ½Ã°£ÀÌ ¼Ò¿äµË´Ï´Ù.
(´Ü, Åä/ÀÏ¿äÀÏ Á¦¿Ü) |
|
|
|
|
ÀÎÅÍÆÄÅ©µµ¼´Â °í°´´ÔÀÇ ´Ü¼ø º¯½É¿¡ ÀÇÇÑ ±³È¯°ú ¹ÝÇ°¿¡ µå´Â ºñ¿ëÀº °í°´´ÔÀÌ ÁöºÒÄÉ µË´Ï´Ù.
´Ü, »óÇ°À̳ª ¼ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯ ¹× ¹ÝÇ°Àº ¹«·á·Î ¹ÝÇ° µË´Ï´Ù.
±³È¯/¹ÝÇ°/º¸ÁõÁ¶°Ç ¹× Ç°Áúº¸Áõ ±âÁØÀº ¼ÒºñÀڱ⺻¹ý¿¡ µû¸¥ ¼ÒºñÀÚ ºÐÀï ÇØ°á ±âÁØ¿¡ µû¶ó ÇÇÇظ¦ º¸»ó ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
Á¤È®ÇÑ È¯ºÒ ¹æ¹ý ¹× ȯºÒÀÌ Áö¿¬µÉ °æ¿ì 1:1¹®ÀÇ °Ô½ÃÆÇ ¶Ç´Â °í°´¼¾ÅÍ(1577-2555)·Î ¿¬¶ô Áֽñ⠹ٶø´Ï´Ù.
¼ÒºñÀÚ ÇÇÇغ¸»óÀÇ ºÐÀïó¸® µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á±âÁØ(°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ µû¶ó ºñÇØ º¸»ó ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
|
±³È¯ ¹× ¹ÝÇ°ÀÌ °¡´ÉÇÑ °æ¿ì |
|
|
»óÇ°À» °ø±Þ ¹ÞÀ¸½Å ³¯·ÎºÎÅÍ 7ÀÏÀ̳» °¡´ÉÇÕ´Ï´Ù. |
|
°ø±Þ¹ÞÀ¸½Å »óÇ°ÀÇ ³»¿ëÀÌ Ç¥½Ã, ±¤°í ³»¿ë°ú ´Ù¸£°Å³ª ´Ù¸£°Ô ÀÌÇàµÈ °æ¿ì¿¡´Â °ø±Þ¹ÞÀº ³¯·ÎºÎÅÍ 3°³¿ùÀ̳», ±×»ç½ÇÀ» ¾Ë°Ô µÈ ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏÀ̳» °¡´ÉÇÕ´Ï´Ù. |
|
»óÇ°¿¡ ¾Æ¹«·± ÇÏÀÚ°¡ ¾ø´Â °æ¿ì ¼ÒºñÀÚÀÇ °í°´º¯½É¿¡ ÀÇÇÑ ±³È¯Àº »óÇ°ÀÇ Æ÷Àå»óÅ µîÀÌ ÀüÇô ¼Õ»óµÇÁö ¾ÊÀº °æ¿ì¿¡ ÇÑÇÏ¿© °¡´ÉÇÕ´Ï´Ù.
|
|
|
|
±³È¯ ¹× ¹ÝÇ°ÀÌ ºÒ°¡´ÉÇÑ °æ¿ì |
|
|
|
°í°´´ÔÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¸ê½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. (´Ü, »óÇ°ÀÇ ³»¿ëÀ» È®ÀÎÇϱâ À§ÇÏ¿© Æ÷Àå µîÀ» ÈѼÕÇÑ °æ¿ì´Â Á¦¿Ü) |
|
½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀçÆǸŰ¡ °ï¶õÇÒ Á¤µµ·Î ¹°Ç°ÀÇ °¡Ä¡°¡ ¶³¾îÁø °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. |
|
Æ÷Àå °³ºÀµÇ¾î »óÇ° °¡Ä¡°¡ ÈÑ¼ÕµÈ °æ¿ì´Â ºÒ°¡´ÉÇÕ´Ï´Ù. |
|
|
´Ù¹è¼ÛÁöÀÇ °æ¿ì ¹ÝÇ° ȯºÒ |
|
|
|
´Ù¹è¼ÛÁöÀÇ °æ¿ì ´Ù¸¥ Áö¿ªÀÇ ¹ÝÇ°À» µ¿½Ã¿¡ ÁøÇàÇÒ ¼ö ¾ø½À´Ï´Ù. |
|
1°³ Áö¿ªÀÇ ¹ÝÇ°ÀÌ ¿Ï·áµÈ ÈÄ ´Ù¸¥ Áö¿ª ¹ÝÇ°À» ÁøÇàÇÒ ¼ö ÀÖÀ¸¹Ç·Î, ÀÌÁ¡ ¾çÇØÇØ Áֽñ⠹ٶø´Ï´Ù. |
|
|
|
|
|
|