´ë·®±¸¸ÅȨ >
ÀÚ¿¬°ú °úÇÐ
>
¼öÇÐ
>
¹ÌÀûºÐÇÐ

º¹¼Ò´Ù¾çü
Á¤°¡ 23,000¿ø
ÆǸŰ¡ 23,000¿ø (0% , 0¿ø)
I-Æ÷ÀÎÆ® 690P Àû¸³(3%)
ÆǸŻóÅ ǰÀý
ºÐ·ù ¹ÌÀûºÐÇÐ
ÀúÀÚ Á¶¿ë½Â
ÃâÆÇ»ç/¹ßÇàÀÏ ±³¿ì / 2021.03.25
ÆäÀÌÁö ¼ö 265 page
ISBN 9791125103301
»óÇ°ÄÚµå 348766372
°¡¿ëÀç°í Àç°íºÎÁ·À¸·Î ÃâÆÇ»ç ¹ßÁÖ ¿¹Á¤ÀÔ´Ï´Ù.
 
ÁÖ¹®¼ö·® :
´ë·®±¸¸Å Àü¹® ÀÎÅÍÆÄÅ© ´ë·®ÁÖ¹® ½Ã½ºÅÛÀ» ÀÌ¿ëÇÏ½Ã¸é °ßÀû¿¡¼­ºÎÅÍ ÇàÁ¤¼­·ù±îÁö Æí¸®ÇÏ°Ô ¼­ºñ½º¸¦ ¹ÞÀ¸½Ç ¼ö ÀÖ½À´Ï´Ù.
µµ¼­¸¦ °ßÀûÇÔ¿¡ ´ãÀ¸½Ã°í ½Ç½Ã°£ °ßÀûÀ» ¹ÞÀ¸½Ã¸é ±â´Ù¸®½Ç ÇÊ¿ä¾øÀÌ ÇÒÀιÞÀ¸½Ç ¼ö ÀÖ´Â °¡°ÝÀ» È®ÀÎÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.
¸ÅÁÖ ¹ß¼ÛÇØ µå¸®´Â ÀÎÅÍÆÄÅ©ÀÇ ½Å°£¾È³» Á¤º¸¸¦ ¹Þ¾Æº¸½Ã¸é »óÇ°ÀÇ ¼±Á¤À» ´õ¿í Æí¸®ÇÏ°Ô ÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.

 ´ë·®±¸¸ÅȨ  > ÀÚ¿¬°ú °úÇÐ  > ¼öÇÐ  > ¹ÌÀûºÐÇÐ

 
¸ñÂ÷
CHAPTER 01 ±âº»°³³ä 1.1 ´Ù¾çü(Manifolds) 1 1.2 º¹¼Ò´Ù¾çü(Complex Manifolds) 4 1.3 º¤Å͹øµé(Vector Bundles) 13 1.4 ´Ù¾çüÀÇ ¸ÅÀå(Embedding of Manifolds) 17 1.5 µå¶÷ÄÚÈ£¸ô·ÎÁö(de Rham Cohomology) 19 1.6 Ư¼º·ù(Characteristic Classes) 25 CHAPTER 02 ?ÄÚÈ£¸ô·ÎÁö 2.1 ?(Sheaf) 31 2.2 ?ÄÚÈ£¸ô·ÎÁö(Sheaf Cohomology) 36 CHAPTER 03 º¹¼Òº¤Å¸¹øµéÀÇ ±âÇÏ 3.1 º¹¼Òº¤Å¸¹øµé(Complex Vector Bundles) 43 3.2 °î·ü(Curvature) 48 3.3 õ-º£ÀÏÀÌ·Ð(Chern-Weil Theory) 53 CHAPTER 04 ÄÚÈ£¸ô·ÎÁö ºÐ¸® 4.1 ¸®¸¸´Ù¾çüÀÇ Á¶È­Æû (Harmonic Forms on Riemannian Manifolds) 60 4.2 Çæ¹Ì¼Ç º¹¼Ò´Ù¾çüÀÇ Á¶È­Æû (Harmonic Forms on Hermitian Complex Manifolds)69 4.3 ÄÌ·¯´Ù¾çüÀÇ ÄÚÈ£¸ô·ÎÁöºÐ¸® (Cohomology Decompositions of KahlerManifolds) CHAPTER 05 º¹¼Ò±Û¶ó½º¸¸´Ù¾çü 5.1 ±Û¶ó½º¸¸´Ù¾çüÀÇ Á¤ÀÇ(Definition of Grassmann Manifold) 86 5.2 ½´º§Æ®¹ú¶óÀ̾îƼ(Schubert Variety) 89 5.3 ±Û¶ó½º¸¸´Ù¾çüÀÇ ÀÀ¿ë (Applications of Grassmann Manifold) 95 CHAPTER 06 °í´ÙÀ̶ó ¸ÅÀå 6.1 È£Áö´Ù¾çü(Hodge Manifolds) 100 6.2 °í´ÙÀ̶ó ¼Ò¸êÁ¤¸®(Kodaira Vanishing Theorem) 107 6.3 ºí·Î¿ì¾÷(Blow-up) 112 6.4 °í´ÙÀ̶ó ¸ÅÀåÁ¤¸®(Kodaira Embedding Theorem) 118 CHAPTER 07 È£ÁöÃßÃø 7.1 È£Áö±¸Á¶(Hodge Structure) 130 7.2 ?¼ÅÃ÷Á¤¸®(Lefschetz Theorem) 134 7.3 È£Áö·ù¿Í ´ë¼öÀû½ÎÀÌŬ·ù (Hodge Class and Algebraic Cycle Class) 137 7.4 ¾Ë·ÁÁø °á°ú(Known Results) 141 CHAPTER 08 ?¼ÅÃ÷ÃßÃø 8.1 ´ë°¢ÄÚÈ£¸ô·ÎÁö·ù(Diagonal Cohomology Class) 146 8.2 ?¼ÅÃ÷ µ¿Çü¸Ê(Lefschetz Isomorphism) 153 8.3 ?¼ÅÃ÷ÃßÃø(Lefschetz Conjecture) 160 ºÎ·Ï ºÎ·Ï A. Çæ¹Ì¼Ç¿Ü´ë¼ö »óÀÇ ¸®´ë¼öÇ¥Çö(Representation) 168 A1. ¸®´ë¼öÀÇ Ç¥Çö(Representation) 168 A2. Çæ¹Ì¼Ç¿Ü´ë¼ö(Hermitian Exterior Algebra) »óÀÇ Ç¥Çö 181 ºÎ·Ï B. º¹¼Ò±¸Á¶(Complex Structures) 187 B1. ¸ÞÆ®¸¯(Metric), º¹¼Ò±¸Á¶(Complex Structure), ±âº»Æû(Fundamental Form)»çÀÌ °ü°è 187 B2. Áغ¹¼Ò´Ù¾çü(Almost Complex Manifolds) 192 B3. º¹¼Ò´Ù¾çü(Complex Manifolds) 196 B4. ÄÌ·¯´Ù¾çü(Kahler Manifolds) 204 B5. È£Áö´Ù¾çü(Hodge Manifolds) 209 ºÎ·Ï C. ¼öÇÐÀÚµé(Mathematicians) 212

ÀúÀÚ
Á¶¿ë½Â
Àú¼­ : [º¹¼Ò´Ù¾çü]

ÀÌ ÃâÆÇ»çÀÇ °ü·Ã»óÇ°
¼±Çü´ë¼öÇÐÀÇ ÀÌÇØ | ±³¿ì
³ëº§»ó°ú ÇÔ²²ÇÏ´Â ¼öÇÐ ¿©Çà | ±è¿µ°ü | ±³¿ì
¹Ì±¹ÆбÇÀÇ ºñ¹Ð°ú Áß±¹ | ÀÌÁ¤°ï | ±³¿ì
KnowHow 1 to 60(ÁßµîÀÓ¿ëÀ» À§ÇÑ Çؼ®ÇÐ) | ±³¿ì
ÁýÇÕ°ú³í¸® | À̼®Á¾ | ±³¿ì
 
µµ¼­¸¦ ±¸ÀÔÇϽŠ°í°´ ¿©·¯ºÐµéÀÇ ¼­ÆòÀÔ´Ï´Ù.
ÀÚÀ¯·Î¿î ÀÇ°ß ±³È¯ÀÌ °¡´ÉÇÕ´Ï´Ù¸¸, ¼­ÆòÀÇ ¼º°Ý¿¡ ¸ÂÁö ¾Ê´Â ±ÛÀº »èÁ¦µÉ ¼ö ÀÖ½À´Ï´Ù.

µî·ÏµÈ ¼­ÆòÁß ºÐ¾ß¿Í »ó°ü¾øÀÌ ¸ÅÁÖ ¸ñ¿äÀÏ 5ÆíÀÇ ¿ì¼öÀÛÀ» ¼±Á¤ÇÏ¿©, S-Money 3¸¸¿øÀ» Àû¸³Çص帳´Ï´Ù.
ÃÑ 0°³ÀÇ ¼­ÆòÀÌ ÀÖ½À´Ï´Ù.