간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (32,490원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (23,940원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (27,360원)
(최대할인 4만원 / 2만원 이상 결제)
Close

소문난 명강의 김기현의 딥러닝 부트캠프 with 파이토치 : 기초부터 수식, 실습까지 담은 올인원 딥러닝 입문 교과서

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 288
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

38,000원

  • 34,200 (10%할인)

    1,900P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 10/5(수) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가

책소개

딥러닝 기초 개념 + 수식 정리 + 코딩 실습 + 실무 환경 프로젝트 연습

이 책은 딥러닝의 기초 내용과 응용 지식을 체계적으로 전달하기 위해 이론과 수식, 실습을 분리하여 설명한다. 딥러닝 기초 개념부터 상위 개념까지 점진적으로 배울 수 있도록 커리큘럼을 구성했고, 이 내용을 수식으로 다시 한번 정리하여 딥러닝의 구조와 원리에 대해 익힌다. 또한 실제 머신러닝 프로젝트를 진행하듯 파일을 구성하고 CLI 환경에서 실습을 진행하면서 실전 감각을 키운다.

출판사 서평

어떻게 딥러닝 학습을 시작해야 할지 모르는 딥린이를 위한 입문 교과서
이 책은 개념, 수식, 실습으로 이어지는 최적의 딥러닝 학습 커리큘럼을 통해 딥러닝에 대한 기본기를 탄탄하게 키워줍니다.

★ 이 책에서 배우는 내용
→ 개발 환경
→ 딥러닝의 개념
→ 파이토치 튜토리얼
→ 선형 계층
→ 손실 함수
→ 경사하강법
→ 선형 회귀
→ 로지스틱 회귀
→ 심층신경망
→ 확률적 경사하강법
→ 최적화
→ 오버피팅 방지
→ 심층신경망으로 분류 문제 해결
→ 정규화
→ 표현 학습
→ 확률론적 관점
→ CNN(합성곱신경망)
→ RNN(순환신경망)

★ 이 책의 구성
딥러닝 개념 및 이론 설명
딥러닝의 기초 개념을 최대한 쉽게 이해할 수 있도록 수학적 표현을 최소화하고 그림 또는 시각화를 활용하여 설명합니다. 기초부터 심화 단계까지 차근차근 접근할 수 있도록 구성했으며 딥러닝의 여러 진행 방식에 대해 원리와 구조를 조금 더 쉽게 체득할 수 있습니다.

수식 정리
딥러닝을 제대로 공부하기 위해서 수학적 배경지식은 반드시 필요합니다. 딥러닝의 기초 개념 및 이론을 수식을 통해 다시 한번 정리합니다.

실습 코드
앞에서 배운 이론과 수식을 파이토치로 어떻게 구현하는지에 대해 익힐 수 있습니다. 이 책의 실습은 GPU 없이 실행이 가능합니다. GPU가 있다면 훨씬 더 빠르게 실행할 수 있지만, GPU 없이도 최대 몇십 분 이내로 실행이 완료되도록 구성되어 있습니다.

실무 환경에서의 실전 같은 프로젝트 연습
단순히 주피터 노트북으로 하는 실습이 아닌 실제 머신러닝 프로젝트를 진행하듯이 파일을 구성하고 CLI 환경에서의 실습을 진행합니다. 단순히 MNIST 분류기를 만들고 끝내는 것이 아니라 실전처럼 MNIST 분류기 성능을 끌어 올리는 방법과 이를 위한 실험 환경 구축 방법에 대해 알아봅니다.

★ 대상 독자
이 책은 딥러닝을 처음 접하는 독자 또는 딥러닝을 어느 정도 알고 있지만 기초가 부족한 독자를 대상으로 합니다.

★ 예제 소스
https://github.com/kh-kim/deep_learning_book_exercise

추천사

김형준(NAVER Clova 머신러닝 엔지니어)
이 책은 저자의 전문 지식과 실무 노하우를 바탕으로 연구/개발 상황을 가정한 실전 예제를 통해 기초를 탄탄히 하고 응용할 수 있도록 도움을 줍니다. 차근차근 기본기를 다질 수 있도록 수식 표현을 설명하는 과정에도 저자의 세심한 배려가 돋보입니다. 또한 입문자를 위해 이론과 수식을 분리하여 설명하고 있습니다. 인공지능 관련 실무자부터 이제 막 딥러닝에 관심이 생긴 입문자까지 자신의 실력을 향상 시킬 수 있는 좋은 책입니다.

이기창(NAVER Language Representatio팀 리더)
『김기현의 딥러닝 부트캠프』는 기본을 다지는 데 필요한 바이블 같은 책이라고 생각합니다. 이 책은 군더더기 같은 내용은 과감히 빼고 꼭 살펴봐야 하는 수학/통계 이론을 꼼꼼하게 다루고 있습니다. 저자의 팁이 가득한 파이토치 실습을 통해 여러분도 각자의 데이터나 해결해야 하는 문제 등에 바로 응용할 수 있는 인사이트를 얻을 수 있을 것입니다.

주재걸(KAIST 김재철AI대학원 교수)
인공지능 분야의 핵심인 딥러닝 기술을 비전공자도 쉽게 접근하고 이해할 수 있는 책입니다. 단순한 개념 설명을 넘어 초심자도 쉽게 따라갈 수 있도록 체계적으로 구성되어 있습니다. 또한 구체적인 실습 자료를 제공하고 있으며 핵심 수식 또한 차근차근 이해하기 쉽게 설명하고 있습니다. 이 책은 어렵게만 느껴지던 인공지능 기술 학습에 있어 진입 장벽을 획기적으로 낮춰 주는 역할을 할 것입니다.

최성준(고려대학교 인공지능학과 조교수)
딥러닝을 다룬 책이 많이 증가했습니다. 이러한 수많은 책 중에서 이 책이 가지고 있는 명확한 강점이 있습니다. 이 책은 저자의 오랜 실무 경험이 고스란히 담겨 있는 실습 과정을 담고 있다는 것입니다. 실무에 바로 적용할 수준의 코드와 프로젝트 파일 구조를 다루고 있어 입문자는 물론 현업에 종사하고 있는 독자에게도 유용한 지침서가 될 것입니다.

하정우(NAVER AI Lab 소장)
현업 일선에서 딥러닝과 관련한 초거대 언어 모델 연구 개발 그리고 서비스화까지 이끌고 있는 저자의 내공이 묻어 나오는 책입니다. 딥러닝의 기본 개념과 이론적 설명, 코드 레벨의 핸즈온 자료와 다양한 실습 예제는 물론 실전 같은 프로젝트 연습과 배포 과정까지 담아 딥러닝을 학습하고자 하는 독자 특히 딥러닝 역량 강화를 원하는 소프트웨어 개발자에게 많은 도움이 될 것입니다.

목차

1장 개발 환경 구축하기
1.1 아나콘다 설치하기
1.2 VS Code 설치 및 환경 설정
1.3 마치며

2장 딥러닝 소개
2.1 딥러닝이란?
2.2 좋은 인공지능이란?
2.3 머신러닝 프로젝트 워크플로
2.4 수학 용어 설명
2.5 마치며

3장 파이토치 튜토리얼
3.1 왜 파이토치인가?
3.2 (실습) 파이토치 설치
3.3 텐서란?
3.4 (실습) 기본 연산
3.5 (실습) 텐서 형태 변환
3.6 (실습) 텐서 자르기 & 붙이기
3.7 (실습) 유용한 함수들

4장 선형 계층
4.1 행렬 곱
4.2 (실습) 행렬 곱
4.3 선형 계층
4.4 (실습) 선형 계층
4.5 (실습) GPU 사용하기
4.6 마치며

5장 손실 함수
5.1 평균 제곱 오차
5.2 (실습) MSE Loss
5.3 마치며

6장 경사하강법
6.1 미분이란?
6.2 편미분
6.3 경사하강법
6.4 학습률에 따른 성질
6.5 (실습) 경사하강법 구현
6.6 (실습) 파이토치 오토그래드 소개
6.7 마치며

7장 선형 회귀
7.1 선형 회귀란?
7.2 선형 회귀의 수식
7.3 (실습) 선형 회귀
7.4 마치며

8장 로지스틱 회귀
8.1 활성 함수
8.2 로지스틱 회귀란?
8.3 로지스틱 회귀의 손실함수
8.4 로지스틱 회귀의 수식
8.5 (실습) 로지스틱 회귀
8.6 마치며

9장 심층신경망 I
9.1 심층신경망
9.2 심층신경망의 학습
9.3 역전파 알고리즘의 수식
9.4 그래디언트 소실 문제
9.5 렐루
9.6 (실습) Deep Regression
9.7 마치며

10장 확률적 경사하강법
10.1 확률적 경사하강법이란?
10.2 SGD의 직관적 이해
10.3 미니배치 크기에 따른 SGD
10.4 (실습) SGD 적용하기
10.5 마치며

11장 최적화
11.1 하이퍼파라미터란?
11.2 팁 : 효율적인 연구/개발 진행 방법
11.3 적응형 학습률
11.4 적응형 학습률의 수식
11.5 (실습) 아담 옵티마이저 적용하기
11.6 마치며

12장 오버피팅을 방지하는 방법
12.1 모델 평가하기
12.2 오버피팅이란?
12.3 테스트셋 구성하기
12.4 (실습) 데이터 나누기
12.5 마치며

13장 심층신경망 II
13.1 이진 분류
13.2 평가 지표
13.3 (실습) Deep Binary Classification
13.4 심층신경망을 활용한 분류
13.5 소프트맥스 함수와 교차 엔트로피 손실 함수
13.6 다중 클래스 분류 결과 분석하기
13.7 (실습) Deep Classification
13.8 마치며

14장 정규화
14.1 정규화의 개요
14.2 가중치 감쇠
14.3 데이터 증강
14.4 드롭아웃
14.5 배치정규화
14.6 (실습) 정규화
14.7 마치며

15장 실무 환경에서의 프로젝트 연습
15.1 실무를 진행하듯 실습하기
15.2 워크플로 리뷰
15.3 실습 소개
15.4 (실습) 분류기 모델 구현하기
15.5 (실습) 데이터 로딩 구현하기
15.6 (실습) 트레이너 클래스 구현하기
15.7 (실습) train.py 구현하기
15.8 (실습) predict.ipynb 구현하기
15.9 마치며

16장 표현 학습
16.1 특징(feature)이란?
16.2 원 핫 인코딩
16.3 차원 축소
16.4 오토인코더
16.5 마치며

17장 확률론적 관점
17.1 들어가며
17.2 기본 확률 통계
17.3 MLE(Maximum Likelihood Estimation)
17.4 신경망과 MLE
17.5 수식: MLE
17.6 MSE 손실 함수와 MLE

18장 CNN(합성곱신경망)
18.1 전통적인 방식
18.2 합성곱 연산
18.3 패턴 추출의 원리
18.4 맥스 풀링과 스트라이드 기법
18.5 합성곱신경망 설계 예제
18.6 (실습) CNN으로 MNIST 분류 구현하기
18.7 마치며

19장 RNN(순환신경망)
19.1 순환신경망 소개
19.2 RNN 한 걸음씩 들여다보기
19.3 순환신경망 활용 사례
19.4 LSTM
19.5 그래디언트 클리핑
19.6 (실습) LSTM으로 MNIST 분류 구현하기
19.7 마치며

관련이미지

저자소개

김기현 [저] 신작알림 SMS신청
생년월일 -

미국 스토니브룩 대학교에서 컴퓨터공학 학사 및 석사 학위를 받았다. 이후 2011년부터 한국전자통신연구원에서 자연어 처리 연구 개발을 시작했고, 현재는 SK텔레콤에서 초거대 언어 모델 GPT3를 활용한 개인화 챗봇과 지식 대화 모델링을 연구 개발 및 상용화하고 있다. 또한 2018년부터 패스트캠퍼스에서 자연어 처리 및 파이토치 강의를 하고 있다. 저서로 『소문난 명강의 : 김기현의 자연어 처리 딥러킹 캠프』(한빛미디어, 2019)가 있다.

이 상품의 시리즈

(총 10권 / 현재구매 가능도서 8권)

선택한 상품 북카트담기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용