간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (26,600원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (19,600원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (22,400원)
(최대할인 4만원 / 2만원 이상 결제)
Close

딥러닝 EXPRESS

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 372
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
  • 저 : 천인국
  • 출판사 : 생능출판
  • 발행 : 2021년 07월 16일
  • 쪽수 : 560
  • ISBN : 9788970504957
정가

28,000원

  • 28,000

    840P (3%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서

  • 상품권

AD

책소개

우리는 알파고의 충격을 잊지 못한다. 컴퓨터가 정복하기 어려울 것이라던 바둑 게임에서 프로 기사들을 상대로, 인공지능 프로그램 알파고는 일방적인 승리를 기록하였다. 최근에 인공지능, 그 중에서도 딥러닝(deep learning)은 시대의 화두가 되었다. 많은 기업에서 인공지능을 미래의 먹거리로 생각하고 연구에 매진하고 있다. 많은 대학교에서도 딥러닝을 정규 과목으로 편성하여 가르치고 있다.
하지만 딥러닝을 효과적으로 가르치기란 쉽지 않다. 많은 이유가 있겠지만 수학도 필요하고, 파이썬, 특히 넘파이 라이브러리에 대한 깊은 지식이 필요하다. 이 책은 대학교의 딥러닝 과목을 목표로 하여 저술되었다. 학생들에게 딥러닝을 효과적으로 가르치려면 여러 가지 기법이 필요하다고 믿고 있다.

출판사 서평

이 책의 특징

- 적절한 그림을 가능한 많이 사용하여, 보다 친숙하고, 지루하지 않으며 독자들이 이해하기 쉽게 구성하였다.
- 구글이 제공하는 텐서플로우 플레이그라운드 웹사이트를 이용하여 각종 개념에 대한 실습을 코딩없이 가능하도록 하였다. 독자들은 웹사이트의 간단한 설정을 통하여 여러 가지 실험을 해볼 수 있다.
- 딥러닝의 핵심적인 개념들을 철저히 설명하였다. 예를 들어서 역전파 알고리즘은 지면을 아끼지 않고 최대한 자세히 설명하였다.
- 흥미로운 주제의 실습 코드들을 최대한 수록하였다. 다만 어려운, 너무 복잡한 코드는 제외하였다.

목차

Chapter 01 인공지능이란?
1. 인공지능의 시대
2. 인공지능의 정의
3. 인공지능의 간단한 역사
4. 규칙 기반 방법 vs 머신러닝 방법
5. 인공지능은 어디에 필요할까?
Lab 머신러닝 체험하기 #1
Lab 머신러닝 체험하기 #2
Lab 티처블 머신 이용하여 머신러닝 체험하기
요약
연습문제

Chapter 02 파이썬과 넘파이 복습
1. 파이썬이란?
2. 파이썬 설치하기
3. 어떤 개발 도구를 사용할 것인가?
4. 파이썬 복습
5. 딥러닝 개발에 사용되는 라이브러리
6. 넘파이
Lab 넘파이로 평균 제곱 오차 계산하기
7. 맵플롯립
Lab 맵플롯립으로 시그모이드 함수를 그려보자
요약
연습문제

Chapter 03 머신러닝의 기초
1. 머신러닝이란?
2. 지도 학습
3. 머신러닝의 과정
4. 붓꽃을 머신러닝으로 분류해보자.
5. 필기체 숫자 이미지를 분류해보자.
6. 머신러닝 알고리즘의 성능평가
7. 머신러닝의 용도
요약
연습문제

Chapter 04 선형 회귀
1. 선형 회귀
2. 선형 회귀에서 손실 함수 최소화 방법
3. 선형 회귀 파이썬 구현 #1
4. 선형 회귀 파이썬 구현 #2
Lab 선형 회귀 실습
5. 과잉 적합 vs 과소 적합
Lab 당뇨병 예제
Mini Project 면적에 따른 집값 예측
요약
연습문제

Chapter 05 퍼셉트론
1. 신경망이란?
2. 퍼셉트론
3. 퍼셉트론 학습 알고리즘
Lab 퍼셉트론 시각화
4. 퍼셉트론의 한계점
Mini Project 퍼셉트론으로 분류
요약
연습문제

Chapter 06 MLP(다층 퍼셉트론)
1. MLP(다층 퍼셉트론)
2. 활성화 함수
Lab 활성화 함수 구현
3. MLP의 순방향 패스
Lab MLP 순방향 패스
4. 손실함수 계산
5. 경사 하강법
Lab 경사 하강법 실습
Lab 2차원 그래디언트 시각화
6. 역전파 학습 알고리즘
7. 역전파 알고리즘을 손으로 계산해보자.
8. 넘파이만을 이용한 MLP 구현
9. 구글의 플레이그라운드를 이용한 실습
요약
연습문제

Chapter 07 MLP와 케라스 라이브러리
1. 미니 배치
Lab 미니 배치 실습 #1
2. 행렬로 미니 배치 구현하기
3. 학습률
Lab 학습률과 배치크기 실습
4. 케라스(Keras) 시작하기
5. 케라스를 사용하는 3가지 방법
6. 케라스를 이용한 MNIST 숫자 인식
7. 케라스의 입력 데이터
8. 케라스의 클래스들
9. 하이퍼 매개변수
요약
연습문제

Chapter 08 심층 신경망
1. 심층 신경망
2. 그래디언트 소실 문제
Lab 활성화 함수 실험
3. 손실 함수 선택 문제
Lab 교차 엔트로피의 계산
4. 케라스에서의 손실 함수
5. 가중치 초기화 문제
Lab 가중치 초기화 실험
6. 범주형 데이터 처리
7. 데이터 정규화
8. 과잉 적합과 과소 적합
9. 과잉 적합 방지 전략
Lab 배치 크기, 학습률, 규제항
10. 앙상블
11. 예제: MNIST 필기체 숫자 인식
12. 예제: 패션 아이템 분류
13. 예제: 타이타닉 생존자 예측하기
요약
연습문제

Chapter 09 컨벌루션 신경망
1. 컨벌루션 신경망 소개
2. 컨볼루션 연산
3. 풀링(서브 샘플링)
4. 컨벌루션 신경망을 해석해보자.
5. 케라스로 컨벌루션 신경망 구현하기
6. 예제: MNIST 필기체 숫자 인식
요약
연습문제

Chapter 10 영상 인식
1. 영상 인식이란?
Lab 영상인식 신경망 체험하기
2. 전통적인 영상 인식
3. 심층 신경망을 이용한 영상 인식
4. 예제: CIFAR-10 영상 분류하기
5. 데이터 증대
6. 예제: 강아지와 고양이 구별하기
7. 가중치 저장과 전이 학습
요약
연습문제

Chapter 11 순환 신경망
1. 순환 신경망이란?
2. 순환 데이터의 이해
3. RNN의 구조
4. RNN의 순방향 패스
5. 순환 신경망의 학습
6. 예제: 사인파 예측 프로그램
7. LSTM 신경망
8. 예제: Keras를 이용한 주가 예측
요약
연습문제

Chapter 12 자연어 처리
1. 자연어 처리란?
2. 텍스트 전처리
3. 단어의 표현
4. 케라스에서의 자연어 처리
5. 예제: 스팸 메일 분류하기
6. 예제: 다음 단어 예측하기
7. 예제: 영화 리뷰 감성 판별하기
요약
연습문제

Chapter 13 강화 학습
1. 강화 학습이란?
2. 강화 학습 프레임워크
3. OpenAI
4. 전통 Q-학습
5. 예제: 얼음 호수 게임에서 Q-학습의 구현
6. Deep Q-학습
7. 예제: 얼음 호수 게임에서 심층 Q-학습의 구현
요약
연습문제

Chapter 14 생성 모델
1. 생성 모델이란?
2. 케라스의 함수형 API
3. 기본형 오토인코더
4. 노이즈 제거 오토인코더
5. GAN이란?
6. 예제: GAN으로 숫자 이미지 생성
요약
연습문제

저자소개

생년월일 -

1983년 서울대학교 전자공학과 공학사. 1985년 한국과학기술원 전기및전자공학과 공학석사. 1993년 한국과학기술원 전기및전자공학과 공학박사. 1985~1988년 삼성전자 종합연구소 주임 연구원. 1993년~현재 순천향대학교 컴퓨터 공학과 교수. 2005년 캐나다 UBC 방문 교수.

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용