간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (28,220원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (20,790원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (23,760원)
(최대할인 4만원 / 2만원 이상 결제)
Close

그래프 알고리즘 : 스파크와 Neo4j로 이해하는 알고리즘과 그래프 분석

원제 : Graph Algorithms: Practical Examples in Apache Spark and Neo4j
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 52
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

33,000원

  • 29,700 (10%할인)

    1,650P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 8/10(수) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(73)

  • 상품권

AD

책소개

그래프 분석과 알고리즘, 이론에 대한 소개로 시작해서 그래프 알고리즘에 초점을 맞춘 경로 찾기, 중심성, 커뮤니티 감지 등을 간략하게 설명한다. 알고리즘의 기능 설명을 확인할 수 있고, 알고리즘에 대한 사용 사례와 자세한 내용을 볼 수 있다. 또한 스파크, Neo4j에서 알고리즘 사용 방법을 제공하는 구체적인 예제 코드를 통해 이론의 활용이 가능하다. 그래프 분석으로 모든 조직의 복잡한 시스템과 대규모 네트워크의 동작을 파악할 수 있으며, 그래프 분석을 더 잘 활용해서 새로운 발견을 하고 지능형 솔루션을 더 빠르게 개발할 수 있을 것이다.

출판사 서평

★ 이 책에서 다루는 내용 ★

■ 데이터에서 그래프 분석으로 더 많은 예측 요소를 나타낼 수 있는 방법
■ 인기 있는 그래프 알고리즘의 작동 방식과 적용 방식
■ 20개 이상의 그래프 알고리즘 예제의 샘플 코드와 팁
■ 다양한 유형의 상황에서 어떤 알고리즘을 사용할지 알아보기
■ 스파크와 Neo4j용 작업 코드, 샘플 데이터 세트를 포함한 예제
■ Neo4j와 스파크를 결합해 링크 예측을 할 수 있는 ML 워크플로 작성

★ 이 책의 구성 ★

처음 두 개 장에서는 그래프 분석, 알고리즘과 이론에 대한 소개를 제공한다. 세 번째 장에서는 고전적인 그래프 알고리즘(경로 찾기, 중심성, 커뮤니티 감지)에 초점을 맞춘 세 가지 내용을 상세히 살펴보기 전에 사용된 플랫폼을 간략하게 설명한다. 워크플로 내에서 그래프 알고리즘이 사용되는 방식을 보여주는 두 개의 장으로 책을 마무리한다. 하나는 일반 분석용이고 다른 하나는 머신러닝용이다.

★ 이 책의 대상 독자 ★

아파치 스파크™ 또는 Neo4j를 사용해본 경험이 있는 개발자와 데이터 과학자가 그래프 알고리즘을 시작할 수 있도록 돕는 실용적인 가이드다. 알고리즘 예제는 스파크와 Neo4j 플랫폼을 활용하지만 선택한 그래프 기술에 관계없이 좀 더 일반적인 그래프 개념을 이해하는 데도 도움이 될 수 있다.

추천사


세계의 금융과 커뮤니케이션 시스템에서 사회적 프로세스와 생물학적 프로세스에 이르기까지 연결(connections)이 주도하고 있다. 이러한 연결의 의미를 찾는 작업은 사기 조직을 식별하고, 각 그룹의 강점을 평가하고 연속적인 실패를 예측하기 위한 권장 사항을 최적화하는 등 산업 전반의 혁신을 주도한다.
연결성이 계속 가속화됨에 따라 그래프 알고리즘에 대한 관심이 폭발적으로 증가한 것은 데이터 간의 관계에서 인사이트를 얻고자 명확하게 수학을 기반으로 하기 때문이다. 그래프 분석으로 모든 조직의 복잡한 시스템과 대규모 네트워크의 작동을 파악할 수 있다.
그래프 분석의 유용성, 중요성뿐만 아니라 복잡한 시나리오의 내부 동작도 알아본다. 최근까지 그래프 분석을 하려면 상당한 전문 지식과 계산이 필요했다. 도구를 사용하기 어려울 뿐만 아니라 그래프 알고리즘을 문제에 적용하는 방법을 아는 사람이 거의 없었기 때문이다. 이를 변화시키는 것이 이 책의 목표다. 이 책을 통해 조직이 그래프 분석을 더 잘 활용해 새롭게 발견하고 지능형 솔루션을 더 빠르게 개발할 수 있도록 도울 것이다.

커크 본(Kirk Borne) 박사(앨런 해밀턴의 수석 데이터 과학자 및 수석 고문)
마케팅 속성 분석, 자금 세탁 방지(AML, Anti-Money Laundering) 분석, 고객 여정 모델링, 안전사고 원인 분석, 문헌 기반 발견, 사기 네트워크 감지, 인터넷 검색 노드 분석, 지도 애플리케이션 생성, 질병 클러스터 분석에서 공통점은 그래프를 사용한다는 것이다.
위에 나열된 모든 예에는 직접/간접(전이) 관계를 포함해 엔티티와 엔티티 간의 관계가 포함된다. 엔티티는 그래프의 노드며 사람, 이벤트, 개체, 개념, 장소가 될 수 있다. 노드 간의 관계는 그래프의 에지(edge)가 된다.
그래프 알고리즘과 그래프 데이터베이스를 그토록 흥미롭고 강력하게 만드는 것은 A가 B와 관련된 두 개체 간에 단순한 관계만 있기 때문은 아니다. 결국 데이터베이스의 표준 관계형 모델은 수십 년 전에 엔티티 관계 다이어그램(ERD)에서 이러한 타입의 관계를 인스턴스화했다. 그래프에서 중요한 것은 방향 관계와 전이 관계다. 방향 관계에서 A는 B를 유발할 수 있지만 그 반대는 안 된다. 전이 관계에서 A는 B와 직접 관련되고 B는 C와 직접 관련되며 A는 C와 직접적으로는 관련되지 않았지만 결과적으로 보면 A는 C와 전이적으로 관련된다.
이러한 전이 관계(특히 관계와 네트워크 패턴이 가능한 한 많고 엔티티 간 일정한 분리 정도를 가지면서 엔티티들이 많고 다양할 때가 해당됨)를 통해 그래프 모델은 연결이 끊어지거나 관련이 없는 것처럼 보일 수 있고 관계형 데이터베이스에 의해 감지되지 않는 엔티티 간의 관계가 존재할 수 있다. 따라서 그래프 모델은 많은 네트워크 분석 사용 사례에서 생산적이며 효과적으로 적용할 수 있다.
인터넷 검색에서 주요 검색 엔진은 하이퍼링크 네트워크(그래프 기반) 알고리즘을 사용해 주어진 검색 단어 집합에 대해 전체 인터넷에서 신뢰할 수 있는 중앙 노드를 찾는다. 네트워크의 권위 있는 노드는 다른 많은 노드가 가리키는 노드이기 때문에 이 경우 에지의 방향성은 매우 중요한 역할을 한다.
그래프 알고리즘을 통한 모든 네트워크 분석 예를 사용해 앞서 언급한 다른 사용 사례에서도 유사한 그래프 작성 능력을 설명할 수 있다. 각 사례는 엔티티(사람, 개체, 이벤트, 행동, 개념, 장소)와 그 관계(접촉점, 인과(casual) 관계, 단순(simple) 연결 모두)와 깊이 관련된다.
그래프가 가진 힘을 고려할 때 실제 사용 사례에서 활용될 수 있는 그래프 모델의 가장 강력한 노드는 ‘콘텍스트(context)’일 수 있다는 점을 염두에 둬야 한다. 콘텍스트에는 시간, 위치, 관련 이벤트, 주변 엔티티 등이 포함될 수 있다. 콘텍스트를 그래프(노드 및 에지)에 통합하면 인상적인 예측(predictive) 분석과 규범적(prescriptive) 분석 기능을 얻을 수 있다.
마크 니덤(Mark Needham)과 에이미 호들러(Amy E. Hodler)의 이 책은 알고리즘, 개념, 알고리즘의 실제 머신러닝 애플리케이션을 포함해 이러한 중요한 타입의 그래프 분석에 대한 지식과 기능을 확장하는 것을 목표로 한다. 기본 개념에서 기본 알고리즘, 처리 플랫폼, 실제 사용 사례에 이르기까지 멋진 그래프 세계에 대한 유익한 가이드다.

루앤 미스퀴타(Luanne Misquitta)(GraphAware 엔지니어링 부사장)
“그래프 알고리즘으로 패턴과 구조를 검출해 연결된 데이터를 살펴볼 수 있는 실용적이고 유익한 가이드다. 그래프 데이터베이스 작업 개발자가 반드시 읽어야 한다.”

목차

1장. 시작하기
__그래프란?
__그래프 분석과 알고리즘은 무엇인가?
__그래프 프로세싱, 데이터베이스, 질의, 알고리즘
____OLTP와 OLAP
__그래프 알고리즘에 관심을 가져야 하는 이유
__그래프 분석 사례
__결론

2장. 그래프 이론과 개념
__용어
__그래프 타입과 구조
____랜덤, 작은 세상, 척도 독립 구조
__그래프가 갖는 여러 특징
____연결과 비연결 그래프
____비가중 그래프와 가중 그래프
____비방향성 그래프와 방향성 그래프
____비순환 그래프와 순환 그래프
____희소 그래프와 밀집 그래프
____일분, 이분, k분 그래프
__그래프 알고리즘의 타입
____경로 찾기
____중심성
____커뮤니티 검출
__요약

3장. 그래프 플랫폼과 프로세싱
__그래프 플랫폼과 프로세싱 고려 사항
____플랫폼 고려 사항
____프로세싱 고려 사항
__대표적인 플랫폼
____플랫폼 선택
____아파치 스파크
____Neo4j 그래프 플랫폼
__요약

4장. 경로 찾기와 그래프 탐색 알고리즘
__예제 데이터: 운송 그래프
____데이터를 아파치 스파크로 불러오기
____데이터를 Neo4j로 불러오기
__너비 우선 탐색
____너비 우선 탐색(아파치 스파크 활용)
__깊이 우선 탐색
__최단 경로
____언제 최단 경로를 사용해야 하는가?
____최단 경로(Neo4j 사용)
____최단 경로(Neo4j 사용)
____최단 경로(가중치 적용, 아파치 스파크 사용)
____최단 경로의 변형(Variation): A*
____최단 경로의 변형: 옌의 k-최단 경로
__모든 쌍의 최단 경로
____모든 쌍의 최단 경로를 자세히 알아보기
____모든 쌍의 최단 경로를 사용해야 할 경우
____모든 쌍의 최단 경로(아파치 스파크 사용)
____모든 쌍의 최단 경로(Neo4j 사용)
__단일 출발 최단 경로
____단일 출발 최단 경로를 사용해야 할 경우
____단일 출발 최단 경로(아파치 스파크 사용)
____단일 출발 최단 경로(Neo4j 사용)
__최소 신장 트리
____최소 신장 트리를 사용해야 할 경우
____최소 신장 트리(Neo4j 사용)
__랜덤 워크
____랜덤 워크를 사용해야 할 경우
____Neo4j를 사용한 랜덤 워크
__요약

5장. 중심성 알고리즘
__그래프 데이터 예: 소셜 그래프
____아파치 스파크로 데이터 가져오기
____Neo4j로 데이터 가져오기
__연결 중심성
____도달
____연결 중심성을 사용해야 할 경우
____연결 중심성(아파치 스파크 사용)
__근접 중심성
____근접 중심성을 사용해야 할 경우
____근접 중심성(아파치 스파크 사용)
____근접 중심성(Neo4j 사용)
____근접 중심성 변형: 와서만과 파우스트
____근접 중심성 변형: 조화 중심성
__매개 중심성
____매개 중심성을 사용해야 할 경우
____매개 중심성(Neo4j 사용)
____매개 중심성 변형: 랜덤 근사 브랜드
__PageRank
____영향력
____PageRank 공식
____반복 동작, 랜덤 서퍼, 랭크 싱크
____PageRank를 사용해야 할 경우
____PageRank(아파치 스파크 사용)
____PageRank(Neo4j 사용)
____PageRank 변형: 개인화된 PageRank
__요약

6장. 커뮤니티 검출 알고리즘
__예제 그래프 데이터: 소프트웨어 종속성 그래프
____아파치 스파크로 데이터 가져오기
____Neo4j로 데이터 가져오기
__트라이앵글 수와 결집 계수
____지역 결집 계수
____전역 결집 계수
____트라이앵글 수와 결집 계수를 사용해야 할 경우
____트라이앵글 수(아파치 스파크 사용)
____Neo4j 사용한 트라이앵글
____지역 결집 계수(Neo4j 사용)
__강한 연결 요소
____강한 연결 요소를 사용해야 할 경우
____강한 연결 요소(아파치 스파크 사용)
____강한 연결 요소(Neo4j 사용)
__연결 요소
____연결 요소를 사용해야 할 경우
____연결 요소(아파치 스파크 사용)
____연결 요소(Neo4j 사용)
__레이블 전파
____준지도 학습과 시드 레이블
____레이블 전파를 사용해야 할 경우
____레이블 전파(아파치 스파크 사용)
____레이블 전파(Neo4j 사용)
__루뱅 모듈성
____루뱅을 사용해야 할 때
____루뱅(Neo4j 사용)
__커뮤니티 검증
__요약

7장. 실전 그래프 알고리즘
__Neo4j를 사용한 옐프 데이터 분석
____옐프 소셜 네트워크
____데이터 불러오기
____그래프 모델
____옐프 데이터 개요
____여행 계획 애플리케이션
____여행 비즈니스 컨설팅
____유사 카테고리 찾기
__아파치 스파크로 항공사 비행 데이터 분석
____탐색적 분석
____인기 있는 공항
____ORD에서 지연
____SFO의 좋지 않은 비행 날짜
____항공사별 상호 연결 공항
__요약

8장. 머신러닝 향상을 위한 그래프 알고리즘
__머신러닝과 문맥의 중요성
____그래프, 콘텍스트, 정확도
__연결 특징 추출과 선택
____그래프 특징
____그래프 알고리즘 특징
__실전 그래프와 머신러닝: 링크 예측
____도구와 데이터
____Neo4j로 데이터 가져오기
____공동 저자 그래프
____균형된 훈련과 테스트용 데이터 세트 만들기
____누락된 링크를 예측하는 방법
____머신러닝 파이프라인 생성
____링크 예측: 기본 그래프 특징
____링크 예측: 트라이앵글과 결집 계수
____링크 예측: 커뮤니티 검출
__요약
__전체 내용 요약

부록. 추가 정보와 자원
__기타 알고리즘
__Neo4j 대량 데이터 가져오기와 옐프
____APOC와 다른 Neo4j 도구
__데이터 세트 찾기
__아파치 스파크와 Neo4j 플랫폼 지원
__훈련

본문중에서

★ 옮긴이의 말 ★

그래프 알고리즘은 오래 전부터 일상생활에서 많이 활용돼 왔다. 특히 스마트폰의 지하철 애플리케이션이나 자동차의 내비게이션은 자주 사용한다. 서울역에서 강남역까지의 가장 빠른 길을 찾으려고 지하철로 이동할 수도 있고, 자가용으로 이동할 수도 있다. 하지만 어떻게 가야 가장 빨리 도착할 수 있는지는 판단하기 어렵다. 이러한 어려움을 해결할 때 그래프 알고리즘이 사용된다. 출발지와 목적지를 입력만 하면 어느 길이 빠른지, 환승을 줄일 수 있는지 모두 살펴볼 수 있다. 이때 사용되는 그래프 알고리즘이 바로 최단 경로 알고리즘이다. 최단 경로 알고리즘은 그래프상의 두 정점 사이를 연결하는 경로 중 가장 짧은 경로를 찾는 방법이다. 여기서 ‘짧다’는 것은 단지 물리적인 거리 외에도 시간과 비용 등의 다양한 기준을 사용할 수 있다.
이렇게 일상생활에서 중요한 위치를 차지하는 그래프 알고리즘은 개발자라면 누구든지 습득해야 하는 필수 지식으로 자리를 잡았다. 뉴욕 주립 대학교의 스티븐 스키에나 교수는 “그래프는 교통 시스템, 인간 상호작용 및 통신 네트워크의 조직을 설명하는 컴퓨터 과학의 추상적 통합 주제 중 하나이며, 그래프 교육을 받은 프로그래머는 매우 다양한 구조를 모델링할 수 있기 때문에 개발할 때 큰 도움이 된다.”라고 언급했다. 개발자들이 산업 전반에서 사용되는 그래프 이론을 현실의 개발에 적용하는 데 이 책은 많은 도움이 된다. 자동차 업계에 있는 개발자라면 자율 주행 알고리즘을 만드는 데 그래프 알고리즘을 가장 필수적으로 적용해야 하지 않을까? 여러 가지 그래프 알고리즘을 학습하고 그 알고리즘 중 어느 것을 사용할지 정하는 일은 매우 어려운 일이지만 이 책이 그 결정에 도움될 수 있을 것이다.
그래프 알고리즘의 다양한 주제를 다루며, 사용자가 자유롭게 사용할 수 있을 정도의 상세한 설명을 제공한다. 알고리즘의 기능에 대한 설명을 학습하고, 알고리즘의 사용 사례와 자세한 내용을 확인할 수 있다. 더불어 스파크, Neo4j 또는 두 가지 모두에서 구체적 알고리즘 사용 방법을 볼 수 있어서 실제로 알고리즘을 사용하려는 개발자들의 레퍼런스가 될 수 있다.
진심으로 이 책이 모든 독자가 그래프 알고리즘을 이해하고 실제로 구현하는 데 많은 도움이 되길 바란다.

저자소개

마크 니덤 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

테크 트랜스 그룹 T4 [역] 신작알림 SMS신청
생년월일 -

테크 트랜스 그룹 T4는 최신 IT 테크놀로지에 대한 리서치를 목적으로 하는 스터디 그룹이다. 엔터프라이즈 환경에서 오픈소스를 활용한 프레임워크 구축에 관심이 많으며 React.js, Node.js, OpenCV, 머신러닝/딥러닝 등의 기술에 주목하고 있다. 또한 다양한 오픈소스 기반 플랫폼의 개발 및 활용에 많은 관심을 갖고 있다. 역서로는 『OpenCV를 위한 머신러닝』(에이콘, 2017), 『컴퓨터 비전과 딥러닝』(에이콘, 2018) 등이 있다.

이 상품의 시리즈

(총 79권 / 현재구매 가능도서 74권)

선택한 상품 북카트담기
펼쳐보기

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크 안전결제시스템 (에스크로) 안내

    (주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용