간편결제, 신용카드 청구할인
삼성카드 6% (27,920원)
(삼성카드 6% 청구할인)
인터파크 롯데카드 5% (28,220원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (20,790원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (23,760원)
(최대할인 4만원 / 2만원 이상 결제)
Close

데이터 과학 트레이닝 북 : 넘파이, 사이파이, 판다스, 매트플롯립을 활용하여 직접 실습해 보는

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 266
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

33,000원

  • 29,700 (10%할인)

    1,650P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 출고완료 후 14일 이내 마이페이지에서 적립받기한 경우만 적립됩니다.
추가혜택
배송정보
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(78)

  • 사은품(3)

출판사 서평

파이썬은 코딩이 쉽고 데이터 분석에 편리한 라이브러리가 많아 데이터 과학에서 널리 쓰이고 있다. [데이터 과학 트레이닝 북]은 저자가 도쿄대학교에서 진행한 데이터 과학 강의를 바탕으로 집필한 책으로, 파이썬과 파이썬 라이브러리인 넘파이, 사이파이, 판다스, 매트플롯립을 활용해 실제 데이터를 처리하고 분석하고 시각화하는 방법을 다룬다. 파이썬의 기본 문법, 파이썬 라이브러리의 기본적인 사용법부터 수학, 확률 통계, 머신러닝까지 데이터 과학에 필요한 내용들을 폭넓게 살펴본다. 풍부한 연습문제를 통해 설명한 개념들이 실제로는 어떤 식으로 쓰이는지 자연스럽게 익힐 수 있도록 구성했다. 이 책을 읽고 나면 데이터 과학의 전체적인 그림을 이해하고 데이터 과학자가 되기 위해 필요한 지식이 무엇인지 파악할 수 있을 것이다.

이 책은 파이썬 기초부터 사이킷런을 통한 머신러닝 모델 구현까지 정리한 데이터 과학 필독서다. 중요한 내용들만 간결하면서도 명확하게 정리했고, 체계적인 연습문제와 해답을 제공하여 독자들이 부담 없이 데이터 과학을 연습할 수 있다. 단기간에 데이터 과학의 기초를 다지고 싶은 모두에게 이 책을 추천한다.
김한결(서울대학교병원 연구원)

[데이터 과학 트레이닝 북]은 이론과 파이썬 프로그래밍을 접목하여, 수학적 증명이 아닌 데이터 실습으로 이론을 이해할 수 있도록 구성되었습니다. 풍부한 예제를 통해 자연스럽게 파이썬 문법을 익힐 수 있는 실용적인 책입니다.
안세진(SK 텔레콤)

[이 책에서 다루는 내용]
▶ 파이썬, 넘파이, 사이파이, 판다스, 매트플롯립 사용법
▶ 확률, 통계, 추정, 회귀 기초
▶ 넘파이, 사이파이를 활용한 과학 계산
▶ 판다스를 이용한 데이터 다루기
▶ 매트플롯립을 이용한 데이터 시각화
▶ 주피터 노트북 사용법
▶ 사이킷런을 이용한 머신러닝 모델 구현

목차

1장 책의 개요와 파이썬 기초
1.1 데이터 과학자의 업무
--1.1.1 데이터 과학자의 업무
--1.1.2 데이터 분석 프로세스
--1.1.3 이 책의 구성
--1.1.4 이 책을 읽는 데 필요한 기초 지식과 유익한 참고문헌
--1.1.5 직접 해보며 연습합시다
1.2 파이썬 기초
--1.2.1 주피터 노트북 사용법
--1.2.2 파이썬 기초
--1.2.3 리스트와 딕셔너리
--1.2.4 조건 분기와 반복문
--1.2.5 함수
--1.2.6 클래스와 인스턴스

2장 과학 계산, 데이터 처리, 기초적인 그래프 제작 라이브러리 사용법
2.1 데이터 분석을 위한 라이브러리
--2.1.1 라이브러리 임포트
--2.1.2 매직 명령어
--2.1.3 라이브러리 임포트
2.2 넘파이 기초
--2.2.1 넘파이 임포트
--2.2.2 배열 생성과 조작, 가공
--2.2.3 난수
--2.2.4 행렬
2.3 사이파이 기초
--2.3.1 사이파이 라이브러리 임포트
--2.3.2 행렬연산
--2.3.3 뉴턴법
2.4 판다스 기초
--2.4.1 판다스 라이브러리 임포트
--2.4.2 Series 사용법
--2.4.3 DataFrame 사용법
--2.4.4 행렬 다루기
--2.4.5 데이터 추출
--2.4.6 데이터 삭제와 결합
--2.4.7 집계
--2.4.8 정렬
--2.4.9 nan(null) 판정
2.5 매트플롯립 기초
--2.5.1 매트플롯립 사용 준비
--2.5.2 산점도
--2.5.3 그래프 분할
--2.5.4 함수 그래프 그리기
--2.5.5 히스토그램

3장 기술통계와 단순회귀분석
3.1 통계의 종류
--3.1.1 기술통계와 추론통계
--3.1.2 라이브러리 임포트
3.2 데이터 입력과 기본 분석
--3.2.1 인터넷 등에 올라 있는 데이터를 읽어 들이기
--3.2.2 데이터 읽기와 확인
--3.2.3 데이터 특성 파악
--3.2.4 정량 데이터와 정성 데이터
3.3 기술통계
--3.3.1 히스토그램
--3.3.2 평균, 중앙값, 최빈값
--3.3.3 분산과 표준편차
--3.3.4 요약 통계량과 백분위수
--3.3.5 박스플롯 그래프
--3.3.6 변동계수
--3.3.7 산점도와 상관계수
--3.3.8 모든 변수의 히스토그램과 산점도 그리기
3.4 단순회귀분석
--3.4.1 선형회귀분석
--3.4.2 결정계수

4장 확률과 통계 기초
4.1 확률과 통계 학습을 위한 사전 준비
--4.1.1 학습을 위한 사전 지식
--4.1.2 라이브러리 임포트
4.2 확률
--4.2.1 수학적 확률
--4.2.2 통계적 확률
--4.2.3 조건부 확률과 곱셈 공식
--4.2.4 독립과 종속
--4.2.5 베이즈 정리
4.3 확률변수와 확률분포
--4.3.1 확률변수, 확률함수, 분포함수, 기댓값
--4.3.2 다양한 분포함수
--4.3.3 커널 밀도함수
4.4 심화학습 : 다차원확률분포
--4.4.1 결합확률분포와 주변확률분포
--4.4.2 조건부 확률 함수와 조건부 기댓값
--4.4.3 독립과 연속분포
4.5 추론통계학
--4.5.1 대수 법칙
--4.5.2 중심극한정리
--4.5.3 표본분포
4.6 통계적 추정
--4.6.1 추정량과 점추정
--4.6.2 불편성과 일치성
--4.6.3 구간추정
--4.6.4 추정량 계산
4.7 통계적 검정
--4.7.1 검정
--4.7.2 제1종 오류와 제2종 오류
--4.7.3 빅데이터 검정

5장 파이썬을 이용한 과학 계산(넘파이와 사이파이)
5.1 개요와 사전준비
--5.1.1 개요
--5.1.2 라이브러리 임포트
5.2 넘파이를 이용한 계산 방법
--5.2.1 인덱스 참조
--5.2.2 넘파이를 이용한 연산 작업
--5.2.3 배열의 조작과 브로드캐스트
5.3 사이파이 응용
--5.3.1 보간법
--5.3.2 선형대수: 행렬 분해
--5.3.3 적분과 미분방정식
--5.3.4 최적화

6장 판다스를 이용해 데이터 다루기
6.1 개요와 사전준비
--6.1.1 라이브러리 임포트
6.2 판다스로 데이터를 다루는 기본적인 방법
--6.2.1 계층적 인덱스
--6.2.2 데이터 결합
--6.2.3 데이터 조작과 변환
--6.2.4 데이터 집계와 그룹 연산
6.3 결측 데이터와 이상값 처리
--6.3.1 결측 데이터 대처 방법
--6.3.2 이상값을 다루는 방법
6.4 시계열 데이터 분석 방법 기초
--6.4.1 시계열 데이터 조작과 변환
--6.4.2 이동평균

7장 매트플롯립을 이용한 데이터 시각화
7.1 데이터 시각화
--7.1.1 데이터 시각화
--7.1.2 라이브러리 임포트
7.2 데이터 시각화 기초
--7.2.1 막대 그래프
--7.2.2 원 그래프
7.3 응용 : 금융 데이터 시각화
--7.3.1 시각화 대상 금융 데이터
--7.3.2 캔들 차트 생성 라이브러리
7.4 응용: 분석 결과 제시
--7.4.1 보고서를 만들 때 주의할 점

8장 머신러닝 기초(지도학습)
8.1 머신러닝 개요
--8.1.1 머신러닝이란
--8.1.2 지도학습
--8.1.3 비지도학습
--8.1.4 강화학습
--8.1.5 라이브러리 임포트
8.2 다중회귀
--8.2.1 자동차 가격 데이터 읽어 들이기
--8.2.2 데이터 정리
--8.2.3 모델 구축과 평가
--8.2.4 모델 구축 및 모델 평가 과정 정리
8.3 로지스틱회귀
--8.3.1 로지스틱회귀 예
--8.3.2 데이터 정리
--8.3.3 모델 구축과 평가
--8.3.4 스케일링을 통한 예측 정확도 향상
8.4 정규화 항이 있는 회귀: 리지회귀, 라소회귀
--8.4.1 라소회귀, 리지회귀의 특징
--8.4.2 다중회귀와 리지회귀 비교
8.5 의사결정나무
--8.5.1 버섯 데이터 세트
--8.5.2 데이터 정리
--8.5.3 엔트로피: 불순도 지표
--8.5.4 정보이득: 분기 조건의 효용성 측정
--8.5.5 의사결정 모델 구축
8.6 k-NN(k최근접이웃법)
--8.6.1 k-NN 모델 구축
8.7 서포트벡터머신
--8.7.1 서포트 벡터 머신 모델 구축

9장 머신러닝 기초(비지도 학습)
9.1 비지도학습 252
--9.1.1 비지도학습 모델 종류
--9.1.2 라이브러리 임포트
9.2 군집분석
--9.2.1 k-means
--9.2.2 k-means 군집 분석
--9.2.3 금융 마케팅 데이터를 이용한 군집분석
--9.2.4 엘보우법으로 군집 수 추정
--9.2.5 군집분석 결과 해석
--9.2.6 k-means 이외의 방법
9.3 주성분 분석
--9.3.1 주성분 분석
--9.3.2 주성분 분석 실습
9.4 장바구니 분석과 연관 규칙
--9.4.1 장바구니 분석
--9.4.2 장바구니 분석을 위한 샘플 데이터 입력
--9.4.3 연관 규칙

10장 모델 검증과 튜닝
10.1 모델 평가와 정확도를 향상시키는 방법
--10.1.1 머신러닝의 과제와 해결 방법
--10.1.2 라이브러리 임포트
10.2 모델 평가와 퍼포먼스 튜닝
--10.2.1 홀드아웃과 교차검증
--10.2.2 모델 튜닝: 하이퍼파라미터 튜닝
--10.2.3 모델 튜닝: 특징 튜닝
--10.2.4 모델의 종류
10.3 모델 성능 평가 지표
--10.3.1 분류 모델 평가: 오차행렬과 연관 지표
--10.3.2 분류 모델 평가:ROC 곡선과 AUC
--10.3.3 회귀 모델 평가지표
10.4 앙상블 학습
--10.4.1 배깅
--10.4.2 부스팅
--10.4.3 랜덤 포레스트, 그레이디언트 부스팅
--10.4.4 향후 학습을 위한 참고문헌 소개

11장 종합연습문제
11.1 종합연습문제
--11.1.1 종합연습문제(1)
--11.1.2 종합연습문제(2)
--11.1.3 종합연습문제(3)
--11.1.4 종합연습문제(4)
--11.1.5 종합연습문제(5)
--11.1.6 종합연습문제(6)
--11.1.7 참고: 공개 데이터 활용

부록 1 실습환경 구축
A.1.1 아나콘다(Anaconda)
A.1.2 아나콘다 패키지 다운 받기
A.1.3 아나콘다 설치
A.1.4 pandas-datareader 및 Plotly 설치

부록 2 연습문제 해답
A.2.1 1장 연습문제
A.2.2 2장 연습문제
A.2.3 3장 연습문제
A.2.4 4장 연습문제
A.2.5 5장 연습문제
A.2.6 6장 연습문제
A.2.7 7장 연습문제
A.2.8 8장 연습문제
A.2.9 9장 연습문제
A.2.10 10장 연습문제
A.2.11 11장 종합연습문제

부록 3 참고문헌・참고 URL
A.3.1 참고문헌
A.3.2 참고 URL

마치며
찾아보기

저자소개

츠카모토 쿠니타카 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

현재 모 금융기관의 연구개발 부서에서 분석 환경 구축부터 데이터 전처리 자동화, 분석, 알고리즘 개발과 구현, 현물거래와 검증, 보고서 작성 등을 담당. 그 밖에도 ‘글로벌 소비 인텔리전스 기부 강좌’를 진행하고 다양한 기업의 분석 업무를 지원·자문하기도 하며 모 컴퓨터 계열 연구소의 기술 선임 연구원을 겸직하고 있다.

야마다 노리카즈 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

(주) 크리에이티브 인텔리전스 대표이사
야후 재팬, 브레인 패드, GREE, 외국 자본계 미디어 에이전시 등에서 데이터 마이닝, 머신러닝을 활용하는 분석 업무에 종사하며 정보의 가치적 관점에서 인텔리전스 관리 방식, 인텔리전스 프로세스와 머신러닝의 융합 가능성을 연구하고 있다. 2015년에는 일본 competitive intelligence 학회에서 최우수 논문상을 수상했다. 현재는 머신러닝, 결정이론, 시뮬레이션 과학을 활용해 고도의 의사 결정을 지원하는 기술 연구 개발, 머신러닝 도입 컨설팅, 데이터 활용 자문을 하고 있다.

오오사와 후미타카 [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

테크니컬 라이터이자 프로그래머, 정보처리 기술자(정보보안 전문가, 네트워크 전문가)
개발 관련 잡지나 책에 글(주로 서버나 네트워크, 웹 프로그래밍, 보안에 관한)을 쓰고 있다. 최근에는 웹 시스템 설계·개발에 종사하고 있다. 주요 저서로는 《Angular Web 앱 개발 스타트북》(소텍사), 《AWS Lambda 실천 가이드》 《Amazon Web Services 완전 솔루션 가이드》 《Amazon Web Services 클라우드 디자인 패턴 구현 가이드》(닛케이 BP), 《UI까지 손이 가지 않는 프로그래머를 위한 Bootstrap 3 실용 가이드》 《prototype.js와 script.aculo.us를 활용한 리치 웹 애플리케이션

펼쳐보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

일본 게이오 대학원을 졸업하고 아주대 대학원에서 학습분석(Learning Analytics)으로 박사 학위를 취득했으며 현재 대학에서 데이터 분석 업무를 담당하고 있다. IT 분야의 영어와 일어 기술서 번역가로도 활동 중이다. 번역한 책으로는 『실체가 손에 잡히는 딥러닝, 기초부터 실전 프로그래밍』(책만, 2019), 『대학 혁신을 위한 빅데이터와 학습분석』(시그마프레스, 2019), 『데이터 시각화, 인지과학을 만나다』(이하 에이콘출판, 2015), 『유니티 입문』(2012) 등이 있다. 전자책 『VR, 가까운 미래』(리디북스, 2016)를 집필했으며, 『스테파네트 아가씨를 찾아 헤맨 나날들

펼쳐보기

이 상품의 시리즈

(총 93권 / 현재구매 가능도서 79권)

펼쳐보기

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    교환/환불

    교환/환불 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

    교환/환불 가능 기간

    고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

    교환/환불 비용

    고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

    교환/환불 불가사유

    반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
    배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

    소비자 피해보상

    소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
    교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

    기타

    도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

    배송안내

    • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

    • 배송비

    도서(중고도서 포함) 구매

    2,000원 (1만원이상 구매 시 무료배송)

    음반/DVD/잡지/만화 구매

    2,000원 (2만원이상 구매 시 무료배송)

    도서와 음반/DVD/잡지/만화/
    중고직배송상품을 함께 구매

    2,000원 (1만원이상 구매 시 무료배송)

    업체직접배송상품 구매

    업체별 상이한 배송비 적용