간편결제, 신용카드 청구할인
카카오페이 3,000원
(카카오페이 결제 시 최대할인 3천원 / 5만원 이상 결제, 기간 중 1회)
삼성카드 6% (17,770원)
(삼성카드 6% 청구할인)
인터파크 롯데카드 5% (17,960원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (13,230원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (15,120원)
(최대할인 4만원 / 2만원 이상 결제)
Close

파이썬으로 데이터 마이닝 시작하기 : 데이터의 수집, 로딩, 변환, 클러스터링, 예측까지

원제 : Python Data Mining Quick Start Guide
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 492
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

21,000원

  • 18,900 (10%할인)

    1,050P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 출고완료 후 14일 이내 마이페이지에서 적립받기한 경우만 적립됩니다.
추가혜택
배송정보
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(45)

  • 사은품(10)

책소개

요즘 가장 인기 있는 프로그래밍 언어인 파이썬을 활용한 데이터 마이닝 기법을 소개한다. 다양한 예제와 데이터 마이닝 기법으로 유용한 인사이트를 어떻게 얻어낼 수 있는지를 배운다. 파이썬 라이브러리를 사용한 데이터 시각화 기법도 함께 소개한다.

출판사 서평

처음 세 장은 데이터 마이닝 프로젝트의 구조적인 내용을 다룬다. 여기에는 데이터 마이닝 파이썬 환경의 생성, 다양한 소스로부터의 데이터 로딩, 다운스트림 분석을 위한 데이터 변환을 포함한다. 나머지 장에서는 주로 개념을 다루며, 신입 사원을 교육하는 것처럼 대화체로 서술했다.

1장. '데이터 마이닝과 파이썬 도구 입문'에서는 독자의 소프트웨어 환경에서 파이썬을 시작하는 법을 다룬다. 파이썬, pandas, scikit-learn, seaborn 같은 인기 있는 라이브러리를 설치하는 법을 알려준다. 환경을 설정하고 나면 다음 설명을 따라갈 수 있을 것이다.

2장. '기본 용어와 종합적 사례'에서는 데이터 마이닝에서 요구되는 기본적 통계와 데이터 용어를 소개한다. 이 장의 끝에서는 종합적 예제를 다루고, 다음 장에서 소개할 여러 기법을 보여준다. 2장을 읽으면 분석이 의미하는 사고의 과정과 업무에서 맞닥뜨리게 될 문제를 해결하기 위한 절차를 좀 더 명확히 이해할 수 있다.

3장. '데이터의 수집, 탐구, 시각화'에서는 데이터베이스, 디스크, 웹에서 데이터를 불러오는 기본적인 방법을 살펴본다. 기본적인 SQL 질의와 pandas의 액세스 및 검색 함수를 다루며, seaborn을 사용한 주요 플롯 형태를 소개한다.

4장. '분석을 위한 데이터 클리닝 및 준비'에서는 데이터 클리닝과 차원 감소의 기본을 다룬다. 어떻게 미지의 값을 처리하고, 입력 데이터를 리스케일하고, 카테고리 변수를 다룰지 이해하게 될 것이다. 또한 고차원 데이터의 문제를 필터, 래퍼(wrapper), 변환 기법 등의 특징 감소 기법을 사용해 문제를 어떻게 해결하는지 알아본다.

5장. '데이터의 그룹화와 클러스터링'에서는 데이터 마이닝을 위한 클러스터링 알고리즘 설계 배경과 사고 과정을 설명한다. 그리고 실무에서 사용하는 클러스터링 기법을 소개하고 모의 데이터를 사용해 이들을 비교한다. 이 내용을 배우면 평균 분리, 밀도, 연결성에 기반한 클러스터링 알고리즘 간의 차이를 알게 될 것이다. 또한 데이터의 플롯을 해석하고 클러스터링이 여러분의 데이터 마이닝 프로젝트에 어느 정도 적합한지에 대한 인사이트를 얻을 수 있다.

6장. '회귀와 분류를 이용한 예측'에서는 손실 함수와 기울기 하강을 통한 예측 모델 학습을 다룬다. 그다음 과대적합, 과소적합 및 적합 과정에서의 모델 정규화를 위한 페널티 접근의 개념을 살펴본다. 그리고 표준적인 회귀 및 분류 기법들과 각각의 정규화된 버전을 다룬다. 교차 검증과 그리드 검색을 포함한 모델 튜닝의 베스트 프랙티스를 다루면서 마무리한다.

7장. '고급 주제: 데이터 처리 파이프라인의 생성과 사용'에서는 scikit-learn 기법을 사용해 파이프라인을 생성하고 적용하는 전략을 살펴본다. 이어서 구현 시점에서 일어나는 파이썬 관련 문제를 다룬다.

★ 이 책에서 다루는 내용 ★

■ 데이터셋 요약 및 데이터 시각화 기법 탐구
■ 분석 작업을 위한 데이터 수집과 구성
■ 데이터 포인트를 그룹에 할당하고 클러스터링으로 시각화하기
■ 데이터에 대한 연속적 및 카테고리적 예측 학습
■ 데이터 클리닝, 노이즈 제거, 차원 감소
■ scikit-learn의 파이프라인 특징을 사용한 데이터 처리 모델 연속화
■ 파이썬의 pickle 모듈을 이용한 데이터 처리 모델 구현

★ 이 책의 대상 독자 ★

파이썬을 활용한 데이터 마이닝과 분석 분야의 초보자를 대상으로 한다. 독자가 파이썬 프로그래밍 경험이 거의 없으며 고등학교 수준 이상의 수학 실력을 갖추지 못한 것으로 가정하고 서술했다. 이 책에 사용된 모든 파이썬 라이브러리는 많은 플랫폼에서 무료로 구할 수 있으므로, 인터넷에 접속할 수 있다면 책에 나오는 개념을 배우고 연습할 수 있을 것이다.

목차

1장. 데이터 마이닝과 파이썬 도구 입문
__기술적, 예측적, 처방적 분석
__이 책에서 다루는 것과 다루지 않는 것
__추가적인 학습을 위한 추천 도서
__데이터 마이닝을 위한 파이썬 환경 설정
__아나콘다와 콘다 패키지 관리자 설치하기
____리눅스에 설치하기
____윈도우에서 설치하기
____맥 OS에서 설치하기
__스파이더 IDE 시작하기
__주피터 노트북 실행하기
__고성능 파이썬 설치하기
__추천 라이브러리와 설치 방법
__추천 라이브러리
__요약

2장. 기본 용어와 종합적 사례
__기본적 데이터 용어
__샘플 스페이스
__변수의 종류
__데이터 형태
__기본적 요약 통계량
__파이썬을 활용한 데이터 마이닝 예제
____데이터를 메모리에 로딩하기: pandas를 통해 데이터 보기와 데이터 관리하기
____데이터 플롯과 탐구: seaborn의 능력 체험하기
____데이터 변환: scikit-learn을 활용한 PCA와 LDA
____분리를 계량화하기: k-means 클러스터링과 실루엣 스코어
____의사 결정 혹은 예측
__요약

3장. 데이터의 수집, 탐구, 시각화
__데이터 소스의 형태와 pandas에 데이터 적재하기
____데이터베이스
____기본적 SQL 질의
____디스크
____웹 소스
____URL
____scikit-learn이나 seaborn에 포함된 데이터 사용
__pandas로 데이터 접근, 검색, 점검하기
__seaborn에서의 기본적 플롯
__데이터 시각화를 위한 인기 있는 형태의 플롯들
____스캐터 플롯
____히스토그램
____조인트 플롯
____바이올린 플롯
____페어플롯
__요약

4장. 분석을 위한 데이터 클리닝과 준비
__scikit-learn 변환 API
__입력 데이터 클리닝
____결측값
____결측값 찾기와 제거하기
____결측값을 대체하기 위한 임퓨팅
__특징 스케일링
____정규화
____표준화
__카테고리 데이터 처리
____순서적 인코딩
____원핫 인코딩
____레이블 인코딩
__고차원 데이터
__차원 감소
____특징 선택
____특징 필터링
____래퍼 기법
__변환
____PCA
____LDA
__요약

5장. 데이터의 그룹화와 클러스터링
__클러스터링 개념 소개
__그룹의 위치
____유클리디안 공간(센트로이드)
____비유클리디안 공간(메디오이드)
__유사성
____유클리디안 공간
____비유클리디안 공간
__종료 조건
____알려진 숫자의 그룹의 경우
____알려지지 않은 숫자의 그룹의 경우
____품질 스코어와 실루엣 스코어
__클러스터링 기법들
____평균 분리
____k-means
____계층적 클러스터링
____클러스터의 숫자를 찾기 위해 덴드로그램 재사용하기
____덴드로그램 그리기
__밀도 클러스터링
__스펙트럼 클러스터링
__요약

6장. 회귀와 분류를 이용한 예측
__scikit-learn 추정기 API
__예측 개념 소개
____예측 모델 표기법
__수학적 도구
____손실 함수
____기울기 하강
____품질 체계 적합하기
__회귀
____회귀 모델 예측 지표
____회귀 예제 데이터
____선형 회귀
____다변량 형태로 확장
____처벌 회귀를 활용한 규칙화
____규칙화 처벌
__분류
____분류 예제 데이터
____분류 모델 예측의 지표
____복수 클래스 분류
____로지스틱 회귀
____규칙화된 로지스틱 회귀
____서포트 벡터 머신
____C를 사용한 소프트 마진
____커널 트릭
____트리 기반 분류
____의사 결정 트리
____랜덤 포레스트
__예측 모델의 튜닝
____교차 검증
____검증 데이터 개론
____K-fold 기법을 이용한 복수의 검증 데이터셋
____초모수 튜닝을 위한 그리드 서치
__요약

7장. 고급 주제: 데이터 처리 파이프라인의 생성과 사용
__당신의 분석 파이프라인 생성
____scikit-learn의 파이프라인 객체
__모델 구현하기
____pickle 모듈을 통해 모델을 연속화하고 저장하기
____연속화된 모델을 로딩하고 예측하기
__파이썬에서의 구현 문제
__요약

본문중에서

인기 있는 무료 파이썬 라이브러리들을 활용한 데이터 마이닝을 소개한다. 이 책은 대화체로 쓰여졌고, 독자에게 인사이트를 주는 동시에 읽기 쉬운 책이 되고자 했다. 데이터 마이닝은 당신의 데이터로부터 전통적 분석 기법으로는 발견하기 힘든 인사이트를 발견하기 위해 설계된 분석 기법의 통칭이다. 데이터 마이닝의 분야는 광대하므로, 이 책의 주제는 데이터 마이닝 영역의 적합성뿐만 아니라, 이에 관련한 머신 러닝과 인공지능의 영역까지 고려해서 선택됐다. 전반부에서는 데이터의 수집, 로딩, 변환 등에 익숙해질 수 있도록 돕고, 후반부에서는 개념적인 내용을 다룬다. 이 개념은 먼저 직관적인 원리부터 소개되고 크게 변환, 클러스터링, 예측으로 나뉜다. 주요 요소 분석, k-means 클러스터링, 서포트 벡터 머신, 랜덤 포레스트와 같이 인기 있는 여러 기법은 후반부에서 다룬다. 그리고 파이프라인과 당신의 분석 모델을 구현하는 것으로 마무리한다.
('지은이의 말' 중에서)

데이터 마이닝의 개념은 학계와 산업계에 소개된 지 오래됐다. 하지만 고급 통계 패키지나 컴퓨터 프로그래밍을 경험해보지 못한 사람도 쉽게 이해하고 간편하게 활용할 수 있는 안내서는 지금껏 찾기 힘들었다.
이 책은 데이터 마이닝 패키지 혹은 컴퓨터 프로그래밍 관련 경험이 없는 독자도 차근차근 쉽게 따라 할 수 있도록 쓰여졌다. 알기 쉬운 예제와 파이썬 프로그램을 활용한 해결 방법을 제공하고 있으므로, 데이터 마이닝에 관심이 있는 학생과 직장인에게 좋은 입문서가 될 것이다.
이 책이 우리나라에서 데이터 마이닝의 대중화를 앞당기는 데 조금이나마 도움이 되길 바란다.
('옮긴이의 말' 중에서)

관련이미지

저자소개

나단 그리넬치(Nathan Greeneltch) [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

인텔 소속의 엔지니어로, 인공지능 컨설팅 부서에서 데이터 마이닝과 분석 전문가로 일하고 있다. 지난 10년 동안 스타트업과 제조 분야 대기업에서 파이썬 분석 업무를 해왔다. 분석 분야에 새로 입문한 신입 사원과 엔지니어를 정기적으로 멘토링하고 있으며, 인텔에서 수시로 강연을 통해 지식을 공유하고 있다. 일리노이주 에반스턴에 위치한 노스웨스턴 대학교에서 물리화학을 전공했으며, 작은 분자의 진동 신호 표면 향상을 주제로 박사 논문을 썼다. 미국 남동부에서 자랐으며, 가족의 반은 아칸소 출신이고 나머지 반은 플로리다 출신이다.

생년월일 -
출생지 -
출간도서 0종
판매수 0권

데이터를 활용한 비즈니스 환경에서의 과학적인 의사 결정 및 업무 성과의 최적화가 주된 연구 분야다. 포드 자동차, JP 모건 체이스, 빅토리아 시크릿 등과 같은 세계적인 회사에서 10년 넘게 마케팅 데이터 분석 경력을 쌓았다. 카네기멜런대학교에서 분석적 마케팅 전공으로 MBA를 마쳤다. 하버드 비즈니스 리뷰 코리아의 객원 번역가로 활동하고 있으며 미국 조지아대학교, 한양대학교 등에서 강의했다.

역자의 다른책

전체보기

이 상품의 시리즈

(총 47권 / 현재구매 가능도서 46권)

펼쳐보기

이 책과 내용이 비슷한 책 ? 내용 유사도란? 이 도서가 가진 내용을 분석하여 기준 도서와 얼마나 많이 유사한 콘텐츠를 많이 가지고 있는가에 대한 비율입니다.

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    교환/환불

    교환/환불 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

    교환/환불 가능 기간

    고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

    교환/환불 비용

    고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

    교환/환불 불가사유

    반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
    배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

    소비자 피해보상

    소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
    교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

    기타

    도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

    배송안내

    • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

    • 배송비

    도서(중고도서 포함) 구매

    2,000원 (1만원이상 구매 시 무료배송)

    음반/DVD/잡지/만화 구매

    2,000원 (2만원이상 구매 시 무료배송)

    도서와 음반/DVD/잡지/만화/
    중고직배송상품을 함께 구매

    2,000원 (1만원이상 구매 시 무료배송)

    업체직접배송상품 구매

    업체별 상이한 배송비 적용