간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (28,220원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (20,790원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (23,760원)
(최대할인 4만원 / 2만원 이상 결제)
Close

파이썬을 활용한 머신러닝 쿡북 : 전처리에서 딥러닝까지, 판다스와 사이킷런 중심의 실전 문제 해결 200선

원제 : Machine Learning with Python Cookbook
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 15
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

33,000원

  • 29,700 (10%할인)

    1,650P (5%적립)

할인혜택
적립혜택
  • S-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 10/4(수) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서

  • 상품권

AD

책소개

200개 비법 레시피로 실무 머신러닝 문제를 쉽고 빠르게 해결하기
200여 개의 비법 레시피를 제공하는 이 책은 실무에서 접하는 다양한 머신러닝 문제를 해결하도록 도와준다. 판다스나 사이킷런 같은 파이썬 라이브러리로 데이터 적재, 텍스트나 수치형 데이터 다루기, 모델 선택, 차원 축소 등 다양한 문제를 해결할 수 있다.

레시피의 코드를 샘플 데이터셋에 적용하며 실제로 코드가 어떻게 동작하는지 확인해본다. 문제 해결에 대한 설명과 유용한 배경지식도 제공한다. 이 책은 이론과 개념 설명을 넘어서 머신러닝 애플리케이션 제작에 필요한 구체적인 도구를 제시한다. 실무에서 레시피를 그대로 적용하거나 적절히 수정하여 쉽고 빠르게 문제를 해결하기 바란다.

출판사 서평

머신러닝 시스템 실무 개발자를 위한 본격적인 문제 해결 가이드북
이 책은 일상적인 머신러닝 작업에서 발생하는 문제를 해결하는 데 필요한 각종 세부사항을 다룹니다. 데이터 과학자와 머신러닝 엔지니어가 모델을 만들면서 가장 많이 사용하는 작업에 필요한 거의 200여 개에 달하는 독립적인 해결책을 담았습니다. 역자의 말을 빌리자면 ‘머신러닝 지식을 모아놓은 두꺼운 책이 아니라, 전문가를 위한 스위스 만능칼 같은’ 책입니다. 이 책의 목표는 실제 머신러닝 시스템을 만드는 사람들을 위한 참고 도서가 되는 것입니다.
또한 이 책에는 한국어판만의 특별 팁을 레시피별로 추가 수록했습니다. 원서 자체가 쿡북 스타일이다 보니 하나의 레시피가 특정 메서드나 클래스의 사용 방법을 다루긴 하지만, 레시피가 비교적 짧아 다양한 옵션이나 유사 함수들을 충분히 설명하지는 못합니다. 원서의 이런 미진한 부분을 보완하고자 역자는 대부분의 레시피에 '덧붙임'이라는 항목을 새롭게 만들고 내용을 추가했습니다. 역자가 이처럼 세심하게 추가 보완한 내용을 통해 독자 여러분이 현업에서의 시스템 개발에 필요한 더욱 풍부하고 실용적인 정보를 얻기를 바랍니다.
주요 내용
● 벡터, 행렬, 배열
● 수치형과 범주형 데이터, 텍스트, 이미지, 날짜, 시간 다루기
● 특성 추출과 특성 선택을 사용한 차원 축소
● 모델 평가와 선택
● 선형 회귀, 로지스틱 회귀, 트리, 랜덤 포레스트, k-최근접 이웃
● 서포트 벡터 머신(SVM), 나이브 베이즈, 군집, 신경망
● 훈련된 모델의 저장과 복원

추천사

전문가가 참고하기에도 초보자가 읽기에도 적절한 분량의 튜토리얼을 쿡북의 특성을 살려 알기 쉽게 잘 엮어냈습니다. 이 책은 면접을 앞둔 데이터 과학자, 배운 것을 복습하고 싶은 사람, 책상에 올려놓을 간결하지만 완벽한 참고서를 찾는 사람에게 안성맞춤입니다.
(그럽허브(Grubhub)의 수석 데이터 과학자, 『테스트 주도 머신 러닝』 저자)

목차

CHAPTER 1 벡터, 행렬, 배열
__1.0 소개
__1.1 벡터 만들기
__1.2 행렬 만들기
__1.3 희소행렬 만들기
__1.4 원소 선택하기
__1.5 행렬 정보 확인하기
__1.6 벡터화 연산 적용하기
__1.7 최댓값, 최솟값 찾기
__1.8 평균, 분산, 표준편차 계산하기
__1.9 배열 크기 바꾸기
__1.10 벡터나 행렬 전치하기
__1.11 행렬 펼치기
__1.12 행렬의 랭크 구하기
__1.13 행렬식 계산하기
__1.14 행렬의 대각원소 추출하기
__1.15 행렬의 대각합 계산하기
__1.16 고윳값과 고유벡터 찾기
__1.17 점곱 계산하기
__1.18 행렬 덧셈과 뺄셈
__1.19 행렬 곱셈
__1.20 역행렬
__1.21 난수 생성하기

CHAPTER 2 데이터 적재
__2.0 소개
__2.1 샘플 데이터셋 적재하기
__2.2 모의 데이터셋 만들기
__2.3 CSV 파일 적재하기
__2.4 엑셀 파일 적재하기
__2.5 JSON 파일 적재하기
__2.6 SQL 데이터베이스로부터 적재하기

CHAPTER 3 데이터 랭글링
__3.0 소개
__3.1 데이터프레임 만들기
__3.2 데이터 설명하기
__3.3 데이터프레임 탐색하기
__3.4 조건에 따라 행 선택하기
__3.5 값 치환하기
__3.6 열 이름 바꾸기
__3.7 최솟값, 최댓값, 합, 평균 계산 및 개수 세기
__3.8 고유한 값 찾기
__3.9 누락된 값 다루기
__3.10 열 삭제하기
__3.11 행 삭제하기
__3.12 중복된 행 삭제하기
__3.13 값에 따라 행을 그룹핑하기
__3.14 시간에 따라 행을 그룹핑하기
__3.15 열 원소 순회하기
__3.16 모든 열 원소에 함수 적용하기
__3.17 그룹에 함수 적용하기
__3.18 데이터프레임 연결하기
__3.19 데이터프레임 병합하기

CHAPTER 4 수치형 데이터 다루기
__4.0 소개
__4.1 특성 스케일 바꾸기
__4.2 특성을 표준화하기
__4.3 정규화하기
__4.4 다항 특성과 교차항 특성 생성하기
__4.5 특성 변환하기
__4.6 이상치 감지하기
__4.7 이상치 다루기
__4.8 특성 이산화하기
__4.9 군집으로 샘플을 그룹으로 묶기
__4.10 누락된 값을 가진 샘플을 삭제하기
__4.11 누락된 값 채우기

CHAPTER 5 범주형 데이터 다루기
__5.0 소개
__5.1 순서가 없는 범주형 특성 인코딩하기
__5.2 순서가 있는 범주형 특성 인코딩하기
__5.3 특성 딕셔너리를 인코딩하기
__5.4 누락된 클래스 값 대체하기
__5.5 불균형한 클래스 다루기

CHAPTER 6 텍스트 다루기
__6.0 소개
__6.1 텍스트 정제하기
__6.2 HTML 파싱과 정제하기
__6.3 구두점 삭제하기
__6.4 텍스트 토큰화하기
__6.5 불용어 삭제하기
__6.6 어간 추출하기
__6.7 품사 태깅하기
__6.8 텍스트를 BoW로 인코딩하기
__6.9 단어 중요도에 가중치 부여하기

CHAPTER 7 날짜와 시간 다루기
__7.0 소개
__7.1 문자열을 날짜로 변환하기
__7.2 시간대 다루기
__7.3 날짜와 시간 선택하기
__7.4 날짜 데이터를 여러 특성으로 나누기
__7.5 날짜 간의 차이를 계산하기
__7.6 요일을 인코딩하기
__7.7 시차 특성 만들기
__7.8 이동 시간 윈도 사용하기
__7.9 시계열 데이터에서 누락된 값 다루기

CHAPTER 8 이미지 다루기
__8.0 소개
__8.1 이미지 로드하기
__8.2 이미지 저장하기
__8.3 이미지 크기 변경하기
__8.4 이미지 자르기
__8.5 이미지 흐리게 하기
__8.6 이미지 선명하게 하기
__8.7 대비 높이기
__8.8 색깔 구분하기
__8.9 이미지 이진화하기
__8.10 배경 제거하기
__8.11 경계선 감지하기
__8.12 모서리 감지하기
__8.13 머신러닝 특성 만들기
__8.14 평균 색을 특성으로 인코딩하기
__8.15 컬러 히스토그램을 특성으로 인코딩하기

CHAPTER 9 특성 추출을 사용한 차원 축소
__9.0 소개
__9.1 주성분을 사용해 특성 줄이기
__9.2 선형적으로 구분되지 않은 데이터의 차원 축소하기
__9.3 클래스 분리를 최대화하여 특성 줄이기
__9.4 행렬 분해를 사용하여 특성 줄이기
__9.5 희소한 데이터의 특성 줄이기

CHAPTER 10 특성 선택을 사용한 차원 축소
__10.0 소개
__10.1 분산을 기준으로 수치 특성 선택하기
__10.2 분산을 기준으로 이진 특성 선택하기
__10.3 상관관계가 큰 특성 다루기
__10.4 분류 작업에 관련 없는 특성 삭제하기
__10.5 재귀적 특성 제거하기

CHAPTER 11 모델 평가
__11.0 소개
__11.1 교차검증 모델 만들기
__11.2 기본 회귀 모델 만들기
__11.3 기본 분류 모델 만들기
__11.4 이진 분류기의 예측 평가하기
__11.5 이진 분류기 임곗값 평가하기
__11.6 다중클래스 분류기 예측 평가하기
__11.7 분류기 성능 시각화하기
__11.8 회귀 모델 평가하기
__11.9 군집 모델 평가하기
__11.10 사용자 정의 평가 지표 만들기
__11.11 훈련 세트 크기에 따른 영향을 시각화하기
__11.12 평가 지표 리포트 만들기
__11.13 하이퍼파라미터 값의 영향을 시각화하기

CHAPTER 12 모델 선택
__12.0 소개
__12.1 완전 탐색을 사용해 최선의 모델 선택하기
__12.2 랜덤 서치를 사용해 최선의 모델 선택하기
__12.3 여러 학습 알고리즘에서 최선의 모델 선택하기
__12.4 전처리와 함께 최선의 모델 선택하기
__12.5 병렬화로 모델 선택 속도 높이기
__12.6 알고리즘에 특화된 기법을 사용하여 모델 선택 수행 속도 높이기
__12.7 모델 선택 후 성능 평가하기

CHAPTER 13 선형회귀
__13.0 소개
__13.1 직선 학습하기
__13.2 교차 특성 다루기
__13.3 비선형 관계 학습하기
__13.4 규제로 분산 줄이기
__13.5 라소 회귀로 특성 줄이기

CHAPTER 14 트리와 랜덤 포레스트
__14.0 소개
__14.1 결정 트리 분류기 훈련하기
__14.2 결정 트리 회귀 훈련하기
__14.3 결정 트리 모델 시각화하기
__14.4 랜덤 포레스트 분류기 훈련하기
__14.5 랜덤 포레스트 회귀 훈련하기
__14.6 랜덤 포레스트에서 중요한 특성 구분하기
__14.7 랜덤 포레스트에서 중요한 특성 선택하기
__14.8 불균형한 클래스 다루기
__14.9 트리 크기 제어하기
__14.10 부스팅을 사용하여 성능 향상하기
__14.11 OOB 데이터로 랜덤 포레스트 평가하기

CHAPTER 15 k-최근접 이웃
__15.0 소개
__15.1 샘플의 최근접 이웃 찾기
__15.2 k-최근접 이웃 분류기 만들기
__15.3 최선의 이웃 개수 결정하기
__15.4 반지름 기반의 최근접 이웃 분류기 만들기

CHAPTER 16 로지스틱 회귀
__16.0 소개
__16.1 이진 분류기 훈련하기
__16.2 다중 클래스 분류기 훈련하기
__16.3 규제로 분산 줄이기
__16.4 대용량 데이터에서 분류기 훈련하기
__16.5 불균형한 클래스 다루기

CHAPTER 17 서포트 벡터 머신
__17.0 소개
__17.1 선형 분류기 훈련하기
__17.2 커널을 사용해 선형적으로 구분되지 않는 클래스 다루기
__17.3 예측 확률 계산하기
__17.4 서포트 벡터 식별하기
__17.5 불균형한 클래스 다루기

CHAPTER 18 나이브 베이즈
__18.0 소개
__18.1 연속적인 특성으로 분류기 훈련하기
__18.2 이산적인 카운트 특성으로 분류기 훈련하기
__18.3 이진 특성으로 나이브 베이즈 분류기 훈련하기
__18.4 예측 확률 보정하기

CHAPTER 19 군집
__19.0 소개
__19.1 k-평균을 사용한 군집
__19.2 k-평균 군집 속도 향상하기
__19.3 평균이동을 사용한 군집
__19.4 DBSCAN을 사용한 군집
__19.5 계층적 병합을 사용한 군집

CHAPTER 20 신경망
__20.0 소개
__20.1 신경망을 위한 데이터 전처리하기
__20.2 신경망 구성하기
__20.3 이진 분류기 훈련하기
__20.4 다중 분류기 훈련하기
__20.5 회귀 모델 훈련하기
__20.6 예측하기
__20.7 훈련 기록 시각화하기
__20.8 가중치 규제로 과대적합 줄이기
__20.9 조기종료로 과대적합 줄이기
__20.10 드롭아웃으로 과대적합 줄이기
__20.11 모델 훈련 진행 과정을 저장하기
__20.12 신경망을 k-폴드 교차검증하기
__20.13 신경망 튜닝하기
__20.14 신경망 시각화하기
__20.15 이미지 분류하기
__20.16 이미지 증식으로 성능 향상하기
__20.17 텍스트 분류하기

CHAPTER 21 훈련된 모델 저장과 복원
__21.0 소개
__21.1 사이킷런 모델을 저장하고 복원하기
__21.2 케라스 모델을 저장하고 복원하기

관련이미지

저자소개

크리스 알본 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

박해선 [역] 신작알림 SMS신청
생년월일 -

기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. 텐서플로 블로그(tensorflow.blog)를 운영하고 있고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다. 『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했습니다. 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『머신러닝 교과서 with 파이썬, 사이킷런, 텐서플로(개정 3판)』(길벗, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『딥러닝 일러스트레이티

펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    10.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    10.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용