°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (69,350¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (51,100¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (58,400¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

Abstract Algebra [¾çÀå]

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

°øÀ¯Çϱâ
Á¤°¡

73,000¿ø

  • 73,000¿ø

    2,190P (3%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
¹è¼ÛÁ¤º¸
  • 5/9(¸ñ) À̳» ¹ß¼Û ¿¹Á¤  (¼­¿ï½Ã °­³²±¸ »ï¼º·Î 512)
  • ¹«·á¹è¼Û
ÁÖ¹®¼ö·®
°¨¼Ò Áõ°¡
  • À̺¥Æ®/±âȹÀü

  • ¿¬°üµµ¼­

  • »óÇ°±Ç

AD

¸ñÂ÷

Prefacep. xi
Preliminariesp. 1
Basicsp. 1
Properties of the Integersp. 4
Z / n Z: The Integers Modulo np. 8
Group Theoryp. 13
Introduction to Groupsp. 16
Basic Axioms and Examplesp. 16
Dihedral Groupsp. 23
Symmetric Groupsp. 29
Matrix Groupsp. 34
The Quaternion Groupp. 36
Homomorphisms and Isomorphismsp. 36
Group Actionsp. 41
Subgroupsp. 46
Definition and Examplesp. 46
Centralizers and Normalizers, Stabilizers and Kernelsp. 49
Cyclic Groups and Cyclic Subgroupsp. 54
Subgroups Generated by Subsets of a Groupp. 61
The Lattice of Subgroups of a Groupp. 66
Quotient Groups and Homomorphismsp. 73
Definitions and Examplesp. 73
More on Cosets and Lagrange's Theoremp. 89
The Isomorphism Theoremsp. 97
Composition Series and the Holder Programp. 101
Transpositions and the Alternating Groupp. 106
Group Actionsp. 112
Group Actions and Permutation Representationsp. 112
Groups Acting on Themselves by Left Multiplication--Cayley's Theoremp. 118
Groups Acting on Themselves by Conjugation--The Class Equationp. 122
Automorphismsp. 133
The Sylow Theoremsp. 139
The Simplicity of A[subscript n]p. 149
Direct and Semidirect Products and Abelian Groupsp. 152
Direct Productsp. 152
The Fundamental Theorem of Finitely Generated Abelian Groupsp. 158
Table of Groups of Small Orderp. 167
Recognizing Direct Productsp. 169
Semidirect Productsp. 175
Further Topics in Group Theoryp. 188
p-groups, Nilpotent Groups, and Solvable Groupsp. 188
Applications in Groups of Medium Orderp. 201
A Word on Free Groupsp. 215
Ring Theoryp. 222
Introduction to Ringsp. 223
Basic Definitions and Examplesp. 223
Examples: Polynomial Rings, Matrix Rings, and Group Ringsp. 233
Ring Homomorphisms an Quotient Ringsp. 239
Properties of Idealsp. 251
Rings of Fractionsp. 260
The Chinese Remainder Theoremp. 265
Euclidean Domains, Principal Ideal Domains and Unique Factorization Domainsp. 270
Euclidean Domainsp. 270
Principal Ideal Domains (P.I.D.s)p. 279
Unique Factorization Domains (U.F.D.s)p. 283
Polynomial Ringsp. 295
Definitions and Basic Propertiesp. 295
Polynomial Rings over Fields Ip. 299
Polynomial Rings that are Unique Factorization Domainsp. 303
Irreducibility Criteriap. 307
Polynomial Rings over Fields IIp. 313
Polynomials in Several Variables over a Field and Grobner Basesp. 315
Modules and Vector Spacesp. 336
Introduction to Module Theoryp. 337
Basic Definitions and Examplesp. 337
Quotient Modules and Module Homomorphismsp. 345
Generation of Modules, Direct Sums, and Free Modulesp. 351
Tensor Products of Modulesp. 359
Exact Sequences--Projective, Injective, and Flat Modulesp. 378
Vector Spacesp. 408
Definitions and Basic Theoryp. 408
The Matrix of a Linear Transformationp. 415
Dual Vector Spacesp. 431
Determinantsp. 435
Tensor Algebras, Symmetric and Exterior Algebrasp. 441
Modules over Principal Ideal Domainsp. 456
The Basic Theoryp. 458
The Rational Canonical Formp. 472
The Jordan Canonical Formp. 491
Field Theory and Galois Theoryp. 509
Field Theoryp. 510
Basic Theory of Field Extensionsp. 510
Algebraic Extensionsp. 520
Classical Straightedge and Compass Constructionsp. 531
Splitting Fields and Algebraic Closuresp. 536
Separable and Inseparable Extensionsp. 545
Cyclotomic Polynomials and Extensionsp. 552
Galois Theoryp. 558
Basic Definitionsp. 558
The Fundamental Theorem of Galois Theoryp. 567
Finite Fieldsp. 585
Composite Extensions and Simple Extensionsp. 591
Cyclotomic Extensions and Abelian Extensions over Qp. 596
Galois Groups of Polynomialsp. 606
Solvable and Radical Extensions: Insolvability of the Quinticp. 625
Computation of Galois Groups over Qp. 640
Transcendental Extensions, Inseparable Extensions, Infinite Galois Groupsp. 645
An Introduction to Commutative Rings, Algebraic Geometry, and Homological Algebrap. 655
Commutative Rings and Algebraic Geometryp. 656
Noetherian Rings and Affine Algebraic Setsp. 656
Radicals and Affine Varietiesp. 673
Integral Extensions and Hilbert's Nullstellensatzp. 691
Localizationp. 706
The Prime Spectrum of a Ringp. 731
Artinian Rings, Discrete Valuation Rings, and Dedekind Domainsp. 750
Artinian Ringsp. 750
Discrete Valuation Ringsp. 755
Dedekind Domainsp. 764
Introduction to Homological Algebra and Group Cohomologyp. 776
Introduction to Homological Algebra--Ext and Torp. 777
The Cohomology of Groupsp. 798
Crossed Homomorphisms and H[superscript 1](G, A)p. 814
Group Extensions, Factor Sets and H[superscript 2](G, A)p. 824
Introduction to the Representation Theory of Finite Groupsp. 839
Representation Theory and Character Theoryp. 840
Linear Actions and Modules over Group Ringsp. 840
Wedderburn's Theorem and Some Consequencesp. 854
Character Theory and the Orthogonality Relationsp. 864
Examples and Applications of Character Theoryp. 880
Characters of Groups of Small Orderp. 880
Theorems of Burnside and Hallp. 886
Introduction to the Theory of Induced Charactersp. 892
Cartesian Products and Zorn's Lemmap. 905
Category Theoryp. 911
Indexp. 919
Table of Contents provided by Rittenhouse. All Rights Reserved.

Ã¥¼Ò°³

Widely acclaimed algebra text. This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.

ÀúÀÚ¼Ò°³

Foote, Richard M. [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

Dummit, David S. [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

´ëÇб³Àç/Àü¹®¼­Àû ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

    ¸®ºä

    0.0 (ÃÑ 0°Ç)

    100ÀÚÆò

    ÀÛ¼º½Ã À¯ÀÇ»çÇ×

    ÆòÁ¡
    0/100ÀÚ
    µî·ÏÇϱâ

    100ÀÚÆò

    10.0
    (ÃÑ 0°Ç)

    ÆǸÅÀÚÁ¤º¸

    • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

    »óÈ£

    (ÁÖ)±³º¸¹®°í

    ´ëÇ¥ÀÚ¸í

    ¾Èº´Çö

    »ç¾÷ÀÚµî·Ï¹øÈ£

    102-81-11670

    ¿¬¶ôó

    1544-1900

    ÀüÀÚ¿ìÆíÁÖ¼Ò

    callcenter@kyobobook.co.kr

    Åë½ÅÆǸž÷½Å°í¹øÈ£

    01-0653

    ¿µ¾÷¼ÒÀçÁö

    ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

    ±³È¯/ȯºÒ

    ¹ÝÇ°/±³È¯ ¹æ¹ý

    ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

    ¹ÝÇ°/±³È¯°¡´É ±â°£

    º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
    ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

    ¹ÝÇ°/±³È¯ ºñ¿ë

    º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

    ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

    ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

    ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

    ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

    ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

    ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

    »óÇ° Ç°Àý

    °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

    ¼ÒºñÀÚ ÇÇÇغ¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

    ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

    ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

    (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
    (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

    ¹è¼Û¾È³»

    • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

    • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

    • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

    • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

    • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë