간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (29,930원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (22,050원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (25,200원)
(최대할인 4만원 / 2만원 이상 결제)
Close

파이썬 라이브러리를 활용한 데이터 분석 : 영화 평점, 이름통계, 선거 데이터 등 실사례 사용

원제 : Python for data analysis
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 1,336
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

35,000원

  • 31,500 (10%할인)

    1,750P (5%적립)

  • 구매

    28,000 (20%할인)

    1,400P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서

  • 상품권

AD

책소개

빅데이터 분석에 관한 가장 완벽한 교재!

이 책은 NumPy, pandas, matplotlib, IPython, Jupyter 등 다양한 파이썬 라이브러리를 사용해서 효과적으로 데이터를 분석하는 방법을 알려준다. pandas의 새로운 기능뿐만 아니라 메모리 사용량을 줄이고 성능을 개선하는 고급 사용법까지 다룬다. 또한 모델링 도구인 statsmodels와 scikit-learn 라이브러리도 소개한다. 연대별 이름 통계 자료, 미 대선 데이터베이스 자료 등 실사례로 따라 하다 보면 어느덧 여러분도 데이터에 알맞게 접근하고 효과적으로 분석하는 전문가가 될 것이다.

출판사 서평

★ 『파이썬 라이브러리를 활용한 데이터 분석』 드디어 개정!
이 책의 초판이 출간된 2012년은 pandas 개발 초기로, 파이썬용 오픈소스 데이터 분석 라이브러리가 흔하지 않았습니다. 이번에 pandas의 새로운 기능과 5년여간의 세월이 흐르는 동안 낡았거나 사용법이 바뀐 내용을 모두 반영하여 책 전반을 다시 다듬었습니다. 또한 당시에는 존재하지 않았거나 책에 싣기에는 불안했던 갓 나온 도구들을 새로 소개하는 내용을 추가했습니다. 2판의 주요 변경 사항은 다음과 같습니다.

● 모든 코드를 파이썬 3.6 기반으로 수정
● 아나콘다 파이썬 배포판과 몇몇 필수 파이썬 패키지로 설치
● 최신 pandas 라이브러리 사용
● pandas 고급 사용법과 사용팁 추가
● statsmodels와 scikit-learn 라이브러리 소개

★ 이 책에서 다루는 내용
이 책은 파이썬으로 데이터를 다루는 다양하고 기본적인 방법을 소개합니다. 그러기 위해 파이썬 프로그래밍 언어의 일부와 데이터 분석 문제를 효율적으로 해결하는 데 도움이 되는 몇 가지 라이브러리를 다룹니다. ‘데이터 분석’이 이 책의 제목이긴 하지만 데이터 분석 방법론이 아니라 파이썬 프로그래밍, 라이브러리, 도구에 집중합니다. 주요 내용은 다음과 같습니다.

● IPython 셸, 주피터 노트북 사용하기
● NumPy 기본 및 고급 기능 알아보기
● pandas로 데이터 분석 입문하기
● 유연한 도구를 사용해 데이터 로딩, 정제, 조인, 병합, 변형하기
● matplotlib으로 유용한 시각화 만들기
● pandas groupby 기능을 적용해 데이터를 나누고 요약하기
● 시계열 데이터 분석 및 조작하기

추천사

“이미 필독서가 된 이 책이 업그레이드되었다. 2판에는 파이썬 3.6부터 pandas 최신 기능에 이르기까지 이 책의 가치를 더 향상시킬 내용이 담겼다. 왜 파이썬 라이브러리인지, 이 도구들을 어떻게 다뤄야 하는지 설명해 독자가 새롭고 창의적인 방식으로 효율적인 사용법을 익히도록 도와준다.”
[(Fernando P?rez)_ IPython 창시자, UC 버클리 통계학과 조교수]

목차

CHAPTER 1 시작하기 전에
__1.1 이 책에서 다루는 내용
__1.2 왜 데이터 분석에 파이썬을 사용하나
__1.3 필수 파이썬 라이브러리
__1.4 설치 및 설정
__1.5 커뮤니티와 컨퍼런스
__1.6 이 책을 살펴보는 방법

CHAPTER 2 파이썬 언어의 기본, IPython, 주피터 노트북
__2.1 파이썬 인터프리터
__2.2 IPython 기초
__2.3 파이썬 기초

CHAPTER 3 내장 자료구조, 함수, 파일
__3.1 자료구조와 순차 자료형
__3.2 함수
__3.3 파일과 운영체제
__3.4 마치며

CHAPTER 4 NumPy 기본: 배열과 벡터 연산
__4.1 NumPy ndarray: 다차원 배열 객체
__4.2 유니버설 함수: 배열의 각 원소를 빠르게 처리하는 함수
__4.3 배열을 이용한 배열지향 프로그래밍
__4.4 배열 데이터의 파일 입출력
__4.5 선형대수
__4.6 난수 생성
__4.7 계단 오르내리기 예제
__4.8 마치며

CHAPTER 5 pandas 시작하기
__5.1 pandas 자료구조 소개
__5.2 핵심 기능
__5.3 기술 통계 계산과 요약
__5.4 마치며

CHAPTER 6 데이터 로딩과 저장, 파일 형식
__6.1 텍스트 파일에서 데이터를 읽고 쓰는 법
__6.2 이진 데이터 형식
__6.3 웹 API와 함께 사용하기
__6.4 데이터베이스와 함께 사용하기
__6.5 마치며

CHAPTER 7 데이터 정제 및 준비
__7.1 누락된 데이터 처리하기
__7.2 데이터 변형
__7.3 문자열 다루기
__7.4 마치며

CHAPTER 8 데이터 준비하기: 조인, 병합, 변형
__8.1 계층적 색인
__8.2 데이터 합치기
__8.3 재형성과 피벗
__8.4 마치며

CHAPTER 9 그래프와 시각화
__9.1 matplotlib API 간략하게 살펴보기
__9.2 pandas에서 seaborn으로 그래프 그리기
__9.3 다른 파이썬 시각화 도구
__9.4 마치며

CHAPTER 10 데이터 집계와 그룹 연산
__10.1 GroupBy 메카닉
__10.2 데이터 집계
__10.3 Apply: 일반적인 분리-적용-병합
__10.4 피벗테이블과 교차일람표
__10.5 마치며

CHAPTER 11 시계열
__11.1 날짜, 시간 자료형, 도구
__11.2 시계열 기초
__11.3 날짜 범위, 빈도, 이동
__11.4 시간대 다루기
__11.5 기간과 기간 연산
__11.6 리샘플링과 빈도 변환
__11.7 이동창 함수
__11.8 마치며

CHAPTER 12 고급 pandas
__12.1 Categorical 데이터
__12.2 고급 GroupBy 사용
__12.3 메서드 연결 기법
__12.4 마치며

CHAPTER 13 파이썬 모델링 라이브러리
__13.1 pandas와 모델 코드의 인터페이스
__13.2 Patsy를 이용해서 모델 생성하기
__13.3 statsmodels 소개
__13.4 scikit-learn 소개
__13.5 더 공부하기

CHAPTER 14 데이터 분석 예제
__14.1 Bit.ly의 1.USA.gov 데이터
__14.2 MovieLens의 영화 평점 데이터
__14.3 신생아 이름
__14.4 미국농무부 영양소 정보
__14.5 2012년 연방선거관리위원회 데이터베이스
__14.6 마치며

APPENDIX A 고급 NumPy
__A.1 ndarray 객체 구조
__A.2 고급 배열 조작 기법
__A.3 브로드캐스팅
__A.4 고급 ufunc 사용법 .
__A.5 구조화된 배열과 레코드 배열
__A.6 정렬에 관하여
__A.7 umba를 이용하여 빠른 NumPy 함수 작성하기
__A.8 고급 배열 입출력
__A.9 성능 팁

APPENDIX B IPython 시스템 더 알아보기
__B.1 명령어 히스토리 사용하기
__B.2 운영체제와 함께 사용하기
__B.3 소프트웨어 개발 도구
__B.4 IPython을 이용한 생산적인 코드 개발에 관한 팁
__B.5 IPython 고급 기능
__B.6 마치며

저자소개

웨스 맥키니 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

생년월일 -

저자 김영근은 애플 II에서 BASIC으로 프로그래밍을 시작했고, 장래 희망을 항상 프로그래머라고 말하고 다니다 정신 차리고 보니 어느덧 20년 차 중년 개발자가 되었다. 리눅스 커뮤니티에서 오랫동안 활동했으며 임베디드부터 미들웨어, 웹, 스마트폰 애플리케이션에 이르기까지 다양한 분야에서 개발했다. 아시아인 최초로 파이썬 소프트웨어 재단 이사로 활동했으며 2014년 첫 ‘PyCon 한국’을 개최했다. 한빛미디어에서 『리눅스 시스템 프로그래밍(개정2판)』, 『고성능 파이썬』을 번역했다.

역자의 다른책

전체보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용