¿Ü±¹µµ¼
´ëÇб³Àç/Àü¹®¼Àû
ÀÚ¿¬°úÇÐ ÀϹÝ
2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.
Á¤°¡ |
38,000¿ø |
---|
38,000¿ø
1,140P (3%Àû¸³)
ÇÒÀÎÇýÅÃ | |
---|---|
Àû¸³ÇýÅà |
|
|
|
Ãß°¡ÇýÅÃ |
|
À̺¥Æ®/±âȹÀü
¿¬°üµµ¼(1)
»óǰ±Ç
ÀÌ»óǰÀÇ ºÐ·ù
¸ñÂ÷
Matrices, Vectors, and Vector Calculus | p. 1 |
Introduction | p. 1 |
Concept of a Scalar | p. 2 |
Coordinate Transformations | p. 3 |
Properties of Rotation Matrices | p. 6 |
Matrix Operations | p. 9 |
Further Definitions | p. 12 |
Geometrical Significance of Transformation Matrices | p. 14 |
Definitions of a Scalar and a Vector in Terms of Transformation Properties | p. 20 |
Elementary Scalar and Vector Operations | p. 20 |
Scalar Product of Two Vectors | p. 21 |
Unit Vectors | p. 23 |
Vector Product of Two Vectors | p. 25 |
Differentiation of a Vector with Respect to a Scalar | p. 29 |
Examples of Derivatives--Velocity and Acceleration | p. 30 |
Angular Velocity | p. 34 |
Gradient Operator | p. 37 |
Integration of Vectors | p. 40 |
Problems | p. 43 |
Newtonian Mechanics--Single Particle | p. 48 |
Introduction | p. 48 |
Newton's Laws | p. 49 |
Frames of Reference | p. 53 |
The Equation of Motion for a Particle | p. 55 |
Conservation Theorems | p. 76 |
Energy | p. 82 |
Limitations of Newtonian Mechanics | p. 88 |
Problems | p. 90 |
Oscillations | p. 99 |
Introduction | p. 99 |
Simple Harmonic Oscillator | p. 100 |
Harmonic Oscillations in Two Dimensions | p. 104 |
Phase Diagrams | p. 106 |
Damped Oscillations | p. 108 |
Sinusoidal Driving Forces | p. 117 |
Physical Systems | p. 123 |
Principle of Superposition--Fourier Series | p. 126 |
The Response of Linear Oscillators to Impulsive Forcing Functions (Optional) | p. 129 |
Problems | p. 138 |
Nonlinear Oscillations and Chaos | p. 144 |
Introduction | p. 144 |
Nonlinear Oscillations | p. 146 |
Phase Diagrams for Nonlinear Systems | p. 150 |
Plane Pendulum | p. 155 |
Jumps, Hysteresis, and Phase Lags | p. 160 |
Chaos in a Pendulum | p. 163 |
Mapping | p. 169 |
Chaos Identification | p. 174 |
Problems | p. 178 |
Gravitation | p. 182 |
Introduction | p. 182 |
Gravitational Potential | p. 184 |
Lines of Force and Equipotential Surfaces | p. 194 |
When Is the Potential Concept Useful? | p. 195 |
Ocean Tides | p. 198 |
Problems | p. 204 |
Some Methods in the Calculus of Variations | p. 207 |
Introduction | p. 207 |
Statement of the Problem | p. 207 |
Euler's Equation | p. 210 |
The "Second Form" of the Euler Equation | p. 216 |
Functions with Several Dependent Variables | p. 218 |
Euler Equations When Auxiliary Conditions Are Imposed | p. 219 |
The [delta] Notation | p. 224 |
Problems | p. 226 |
Hamilton's Principle--Lagrangian and Hamiltonian Dynamics | p. 228 |
Introduction | p. 228 |
Hamilton's Principle | p. 229 |
Generalized Coordinates | p. 233 |
Lagrange's Equations of Motion in Generalized Coordinates | p. 237 |
Lagrange's Equations with Undetermined Multipliers | p. 248 |
Equivalence of Lagrange's and Newton's Equations | p. 254 |
Essence of Lagrangian Dynamics | p. 257 |
A Theorem Concerning the Kinetic Energy | p. 258 |
Conservation Theorems Revisited | p. 260 |
Canonical Equations of Motion--Hamiltonian Dynamics | p. 265 |
Some Comments Regarding Dynamical Variables and Variational Calculations in Physics | p. 272 |
Phase Space and Liouville's Theorem (Optional) | p. 274 |
Virial Theorem (Optional) | p. 277 |
Problems | p. 280 |
Central-Force Motion | p. 287 |
Introduction | p. 287 |
Reduced Mass | p. 287 |
Conservation Theorems--First Integrals of the Motion | p. 289 |
Equations of Motion | p. 291 |
Orbits in a Central Field | p. 295 |
Centrifugal Energy and the Effective Potential | p. 296 |
Planetary Motion--Kepler's Problem | p. 300 |
Orbital Dynamics | p. 305 |
Apsidal Angles and Precession (Optional) | p. 312 |
Stability of Circular Orbits (Optional) | p. 316 |
Problems | p. 323 |
Dynamics of a System of Particles | p. 328 |
Introduction | p. 328 |
Center of Mass | p. 329 |
Linear Momentum of the System | p. 331 |
Angular Momentum of the System | p. 336 |
Energy of the System | p. 339 |
Elastic Collisions of Two Particles | p. 345 |
Kinematics of Elastic Collisions | p. 352 |
Inelastic Collisions | p. 358 |
Scattering Cross Sections | p. 363 |
Rutherford Scattering Formula | p. 369 |
Rocket Motion | p. 371 |
Problems | p. 378 |
Motion in a Nonintertial Reference Frame | p. 387 |
Introduction | p. 387 |
Rotating Coordinate Systems | p. 388 |
Centrifugal and Coriolis Forces | p. 391 |
Motion Relative to the Earth | p. 395 |
Problems | p. 408 |
Dynamics of Rigid Bodies | p. 411 |
Introduction | p. 411 |
Simple Planar Motion | p. 412 |
Inertia Tensor | p. 415 |
Angular Momentum | p. 419 |
Principal Axes of Inertia | p. 424 |
Moments of Inertia for Different Body Coordinate Systems | p. 428 |
Further Properties of the Inertia Tensor | p. 433 |
Eulerian Angles | p. 440 |
Euler's Equations for a Rigid Body | p. 444 |
Force-Free Motion of a Symmetric Top | p. 448 |
Motion of a Symmetric Top with One Point Fixed | p. 454 |
Stability of Rigid-Body Rotations | p. 460 |
Problems | p. 463 |
Coupled Oscillations | p. 468 |
Introduction | p. 468 |
Two Coupled Harmonic Oscillators | p. 469 |
Weak Coupling | p. 473 |
General Problem of Coupled Oscillations | p. 475 |
Orthogonality of the Eigenvectors (Optional) | p. 481 |
Normal Coordinates | p. 483 |
Molecular Vibrations | p. 490 |
Three Linearly Coupled Plane Pendula--an Example of Degeneracy | p. 495 |
The Loaded String | p. 498 |
Problems | p. 507 |
Continuous Systems; Waves | p. 512 |
Introduction | p. 512 |
Continuous String as a Limiting Case of the Loaded String | p. 513 |
Energy of a Vibrating String | p. 516 |
Wave Equation | p. 520 |
Forced and Damped Motion | p. 522 |
General Solutions of the Wave Equation | p. 524 |
Separation of the Wave Equation | p. 527 |
Phase Velocity, Dispersion, and Attenuation | p. 533 |
Group Velocity and Wave Packets | p. 538 |
Problems | p. 542 |
Special Theory of Relativity | p. 546 |
Introduction | p. 546 |
Galilean Invariance | p. 547 |
Lorentz Transformation | p. 548 |
Experimental Verification of the Special Theory | p. 555 |
Relativistic Doppler Effect | p. 558 |
Twin Paradox | p. 561 |
Relativistic Momentum | p. 562 |
Energy | p. 566 |
Spacetime and Four-Vectors | p. 569 |
Lagrangian Function in Special Relativity | p. 578 |
Relativistic Kinematics | p. 579 |
Problems | p. 583 |
Appendices | |
Taylor's Theorem | p. 589 |
Problems | p. 593 |
Elliptic Integrals | p. 594 |
Elliptic Integrals of the First Kind | p. 594 |
Elliptic Integrals of the Second Kind | p. 595 |
Elliptic Integrals of the Third Kind | p. 595 |
Problems | p. 598 |
Ordinary Differential Equations of Second Order | p. 599 |
Linear Homogeneous Equations | p. 599 |
Linear Inhomogeneous Equations | p. 603 |
Problems | p. 606 |
Useful Formulas | p. 608 |
Binomial Expansion | p. 608 |
Trigonometric Relations | p. 609 |
Trigonometric Series | p. 610 |
Exponential and Logarithmic Series | p. 610 |
Complex Quantities | p. 611 |
Hyperbolic Functions | p. 611 |
Problems | p. 612 |
Useful Integrals | p. 613 |
Algebraic Functions | p. 613 |
Trigonometric Functions | p. 614 |
Gamma Functions | p. 615 |
Differential Relations in Different Coordinate Systems | p. 617 |
Rectangular Coordinates | p. 617 |
Cylindrical Coordinates | p. 617 |
Spherical Coordinates | p. 619 |
A "Proof" of the Relation [characters not reproducible] = [characters not reproducible] | p. 621 |
Numerical Solution for Example 2.7 | p. 623 |
Selected References | p. 626 |
Bibliography | p. 628 |
Answers to Even-Numbered Problems | p. 633 |
Index | p. 643 |
Table of Contents provided by Ingram. All Rights Reserved. |
Ã¥¼Ò°³
1. Matrices, Vectors, and Vector Calculus. 2. Newtonian Mechanics--Single Particle. 3. Oscillations. 4. Nonlinear Oscillations and Chaos. 5. Gravitation. 6. Some Methods in the Calculus of Variations. 7. Hamilton's Principle--Lagrangian and Hamiltonian Dynamics. 8. Central-Force Motion. 9. Dynamics of a System of Particles. 10. Motion in a Noninertial Reference Frame. 11. Dynamics of Rigid Bodies. 12. Coupled Oscillations. 13. Continuous Systems: Waves. 14. The Special Theory of Relativity. Appendices. Selected References. Bibliography. Answers to Even-Numbered Problems.
ÀúÀÚ¼Ò°³
»ý³â¿ùÀÏ | - |
---|
ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.
ÁÖ°£·©Å·
´õº¸±â»óǰÁ¤º¸Á¦°ø°í½Ã
À̺¥Æ® ±âȹÀü
´ëÇб³Àç/Àü¹®¼Àû ºÐ¾ß¿¡¼ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥
¸®ºä
±¸¸Å ÈÄ ¸®ºä ÀÛ¼º ½Ã, ºÏÇǴϾð Áö¼ö ÃÖ´ë 600Á¡
±â´ëÆò
±â´ëÆò
ÆÇ¸ÅÀÚÁ¤º¸
ÆÇ¸ÅÀÚ |
(ÁÖ)±³º¸¹®°í |
---|---|
»óÈ£ |
(ÁÖ)±³º¸¹®°í |
»ç¾÷ÀÚ Á¾·ù |
¹ýÀλç¾÷ÀÚ |
»ç¾÷ÀÚ¹øÈ£ |
102-81-11670 |
¿¬¶ôó |
1544-1900 |
À̸ÞÀÏ |
callcenter@kyobobook.co.kr |
Åë½ÅÆÇ¸Å ½Å°í ¹øÈ£ |
01-0653 |
¿µ¾÷¼ÒÀçÁö |
¼¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù) |
±³È¯/ȯºÒ
¹Ýǰ/±³È¯ ¹æ¹ý |
¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹Ýǰ/±³È¯/ȯºÒ¡¯ ¿¡¼ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼ ½Åû °¡´É |
---|---|
¹Ýǰ/±³È¯°¡´É ±â°£ |
º¯½É ¹ÝǰÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É |
¹Ýǰ/±³È¯ ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯ |
·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì |
»óǰ ǰÀý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ½ |
¼ÒºñÀÚ ÇÇÇØº¸»ó |
·»óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© ó¸®µÊ ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀǼҺñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ |
(ÁÖ)ÀÎÅÍÆÄÅ©ÀÇ ¸ðµç »óǰÀº ÆÇ¸ÅÀÚ ¹× °áÁ¦ ¼ö´ÜÀÇ ±¸ºÐ¾øÀÌ È¸¿ø´ÔµéÀÇ ±¸¸Å¾ÈÀüÀ» À§ÇØ ¾ÈÀü°áÁ¦ ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© ¼ºñ½ºÇϰí ÀÖ½À´Ï´Ù.
°áÁ¦´ë±Ý ¿¹Ä¡¾÷ µî·Ï : 02-006-00064
¼ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ
¹è¼Û¾È³»
±³º¸¹®°í »óǰÀº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óǰÀ» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.
Ãâ°í°¡´É ½Ã°£ÀÌ ¼·Î ´Ù¸¥ »óǰÀ» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óǰÀ» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.
±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.
¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.