간편결제, 신용카드 청구할인
네이버페이 1%
(네이버페이 결제 시 적립)
NH(올원페이)카드 12% (26,140원)
(3만원 이상 결제/최대 1만원 할인)
북피니언 롯데카드 30% (20,790원)
(최대할인 3만원 / 3만원 이상 결제)
EBS 롯데카드 20% (23,760원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 NEW 우리V카드 10% (26,730원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 현대카드 7% (27,630원)
(최대할인 3만원 / 3만원 이상 결제)
Close

핸즈온 머신러닝 : 사이킷런과 텐서플로를 활용한 머신러닝, 딥러닝 실무

원제 : Hands-On Machine Learning with Scikit-Learn and TensorFlow

2013년 9월 9일 이후 누적수치입니다.

판매지수 7,193
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

33,000원

  • 29,700 (10%할인)

    1,650P (5%적립)

  • 구매

    26,400 (20%할인)

    1,320P (5%적립)

할인혜택
적립혜택자동적립
배송정보
주문수량
감소 증가
  • 이벤트/기획전(2)

  • 연관도서(2)

  • 사은품(3)

책소개

인공지능 분야에 종사한다면 반드시 읽어야 하는
머신러닝 전문가로 이끄는 최고의 실전 지침서


최근의 눈부신 혁신들로 딥러닝은 머신러닝 분야 전체를 뒤흔들고 있습니다. 이제 이 기술을 거의 모르는 프로그래머도 데이터로부터 학습하는 프로그램을 어렵지 않게 작성할 수 있습니다. 이 책은 그 지름길입니다. 구체적인 예, 핵심 이론, 검증된 두 프레임워크(사이킷런, 텐서플로)를 이용해 지능형 시스템을 구축하는 개념과 방법을 확실하게 알려줍니다. 또한, 각 장의 연습문제는 본문에서 익힌 기법을 실전에 응용하는 데 큰 도움이 될 것입니다.

출판사 서평

아마존 인공지능 분야 부동의 1위 도서
이 책의 원서는 출간 직후부터 미국 아마존 인공지능 분야에서 줄곧 1위 자리를 지키고 있습니다. 가장 많은 명저가 경쟁하는 시장에서 이처럼 확고부동한 호응을 얻은 데는 그만한 이유가 있습니다. 이론과 활용을 적절히 섞으면서도 실무에서 확실히 통하도록 구성했고, 나아가 실무자들의 실력을 한층 끌어올려줄 깊이를 담았기 때문이죠.

또한, 박해선 역자는 번역서에 많은 노력과 애정을 쏟아붓는 분으로 손꼽힙니다. 모든 것을 직접 해보며 독자가 궁금해할 만한 내용을 꼼꼼히 챙겨, 아마도 책을 읽다 보면 저절로 역자께 감사하는 마음마저 들게 될 것입니다. 게다가 철저한 사후지원까지...

이 책 한 권으로 머신러닝과 딥러닝을 통달할 수는 없지만, 인공지능 마스터로 가는 거리를 단축해줄 치트키가 되어줄 것입니다.

★ 목적과 접근 방식
이 책은 여러분이 머신러닝을 거의 모른다고 가정하고, 데이터로부터 스스로 학습하는 프로그램을 실제로 구현하는 데 필요한 개념, 직관, 도구를 알려주는 것을 목표로 합니다.

선형 회귀처럼 가장 단순하고 널리 쓰이는 기법부터 시장을 선도하는 딥러닝 기법까지 다채로운 지식과 경험을 담았고, 당장 제품화에 사용할 수 있는 다음의 두 파이썬 프레임워크를 활용했습니다.
- 사이킷런(Scikit-Learn)은 다양한 머신러닝 알고리즘을 효율적으로 구현했으며 사용하기도 쉬워 머신러닝을 처음 배우기에 가장 좋은 도구입니다.
- 텐서플로(TensorFlow)는 수치계산을 데이터 플로 그래프를 이용하여 분산 처리해주는, 더 복잡한 라이브러리입니다. 연산을 수천 대의 GPU 서버에 분배하여 대규모 신경망을 효율적으로 학습시키고 운영할 수 있습니다. 텐서플로는 구글이 만들어 자사의 다양한 대규모 머신러닝 서비스에 활용하고 있으며 2015년에 오픈소스로 공개했습니다.

★ 주요 내용
1부. 사이킷런을 활용한 머신러닝 실무

한눈에 보는 머신러닝
머신러닝 프로젝트 처음부터 끝까지
분류
모델 훈련
서포트 벡터 머신
결정 트리
앙상블 학습과 랜덤 포레스트
차원 축소

2부. 텐서플로를 활용한 딥러닝 실무
텐서플로 시작하기
인공 신경망 소개
심층 신경망 훈련
다중 머신과 장치를 위한 분산 텐서플로
합성곱 신경망
순환 신경망
오토인코더
강화 학습

추천사

"이 책이 한국에도 출간된다는 소식을 듣고 매우 매우 기대하고 있던 차에 마침 역자인 박해선 님과 인연이 닿아서 추천사까지 쓰게 된 점을 무한한 영광으로 생각합니다. 기하급수적으로 다양하고 많은 데이터가 쌓이고 기술의 발전으로 데이터 저장 비용과 연산 비용이 지속해서 낮아지면서 자연스럽게 다시 주목받게 된 머신러닝 기술은 개발자라면 누구나 알아야 하는 교양필수가 되고 있습니다. 특히 알파고 매치가 보여준 놀라운 결과가 한국 개발자들에게 엄청난 자극과 흥미를 유발하여 업계에 새로운 활력을 불어넣었음을 나날이 체감하고 있습니다.

그러한 가운데 이 책의 출간은 그동안 머신러닝을 공부해볼까 생각하던 분들뿐 아니라 이미 공부한 분들에게도 아주 큰 도움이 되리라 확신합니다. 머신러닝을 공부하다 보면 여러 가지 새로운 개념과 용어를 습득하고 그 개념/용어 사이의 관계를 이해하고 정리하는 일이 정말 어렵습니다. 이 책은 머신러닝의 전반적인 이해를 도와주는 내용으로 시작해서 중요한 여러 개념과 이론들을 쉽게 이해시켜 주고, 많이 쓰이는 딥러닝 알고리즘까지 아주 잘 커버했습니다. 또한 개념과 이론 습득에 그치지 않고 직접 실습해볼 수 있는 방법까지 제공하여 독자의 이해를 더욱 효과적으로 돕고 있습니다. 특히나 머신러닝을 처음 접하는 경우 인터넷의 수많은 강좌와 자료에 압도되기 쉬운데, 이렇게 일목요연하게 정리된 책 한 권이 주는 가치와 효용은 매우 클 것입니다.

부디 이 책을 통해서 더욱 많은 분이 머신러닝이라는 이 중요한 기술을 잘 습득하여 더 나은 개발자로 거듭나기를 진심으로 기원합니다!"
- 권순선 / Head of CJK/ANZ Developer Ecosystem, 구글

"몇 년 전부터 머신러닝과 딥러닝이 학계는 물론 업계에서도 많은 화제가 되면서 각종 강의와 책이 쏟아져 나왔습니다. 그런데 책 대부분은 비전공자를 위한 입문서이거나 특정 패키지(혹은 오픈소스)를 설명하는 데 치중하여 실전에서 쓰기에는 부족했습니다. 그래서 우리 개발자들은 실전에 쓸 수 있는 수준의, 저자의 경험이 녹아있는 책을 원해왔습니다.

작년에 이러한 갈증을 메워줄 이 책의 원서가 출간되었을 때 커뮤니티와 스터디 그룹에서 많은 관심을 보였고, 저 또한 많은 도움을 받았습니다. 거의 600쪽에 달하는 이 원서는 예제 코드만 많이 나열하거나 이론만을 길게 설명하기보다는, 여러 상황에서 해당 알고리즘을 써야 하는 이유와 저자의 경험을 녹인 코드와 설명으로 실전에서 통하는 내용을 담았습니다. 또한, 모든 코드를 주피터 노트북에서 바로 실행해볼 수 있도록 깃허브에 공개했습니다. 이 코드는 굉장히 깔끔하고 이해하기 쉬우며 실전에 도움 되는 정말 'Hands-On' 자료입니다.

또한, 이 번역서의 번역 품질도 굉장히 높습니다. 저자의 의도가 그대로 전달되면서도 설명을 최대한 쉽게 풀어냈습니다. 특히 독자가 이해하기 어려울 만한 부분을 풍부한 옮긴이의 주석이 세심히 메워주며, 도움 될 만한 최신 정보까지 꼼꼼히 알려줍니다. 그래서인지 단순한 1:1 번역이 아니라, 책을 완전히 이해한 다음 새롭게 한글책으로 다시 태어났다는 느낌을 받았습니다.

이 책은 빠르게 읽고 소비하는 일회성 책이 아닙니다. 항상 옆에 두고 시간을 더 투자하여 곱씹어 이해하고 공개된 코드를 같이 실습한다면, 다른 책에서 얻지 못하는 깊은 지식과 경험을 얻을 수 있습니다. 이 책이 여러분의 업무 전환이나 실무에 많은 도움이 되었으면 합니다."
- 이상훈 / 삼성생명 DA Lab, '케라스 코리아', '스파크 사용자 모임' 운영자

"인공지능은 어느덧 우리 삶에 들어와 매우 중요한 위치를 차지하였고, 심지어 이제는 어색하지도 않습니다. 알파고가 세상에 선보인 지 올해로 2년, 우리나라도 유수의 스타트업과 대기업이 AI에 투자하는 등, 1분 1초가 다르게 새로운 AI 기술에 관한 뉴스가 쏟아집니다.

AI 열풍과 더불어 관련 서적이 수없이 출간됐습니다. 하지만 이 책처럼 이론과 활용이 유기적으로 연결되는 책은 드물었습니다.

이 책은 머신러닝 이론은 빠삭하게 공부한 거 같은데 어떻게 구현할지가 막막한 순간, 텐서플로 코딩을 하다가 '이 코드가 왜 이렇게 흘러가는 거지?'하는 의문이 들 때 길을 밝혀줄, 마치 정석처럼 책꽂이에 한 권씩은 꼭 꽂혀있어야 하는 책이라고 생각합니다. 이제 막 머신러닝의 드넓은 바다로 항해를 시작하신 여러분에게 이 책은 정말 견고한 나침반이 되어줄 것입니다."
- 이준우 / MindsLab Brain팀

목차

1부. 머신러닝

1장. 한눈에 보는 머신러닝

1.1 머신러닝이란?
1.2 왜 머신러닝을 사용하는가?
1.3 머신러닝 시스템의 종류
1.4 머신러닝의 주요 도전 과제
1.5 테스트와 검증
1.6 연습문제

2장. 머신러닝 프로젝트 처음부터 끝까지
2.1 실제 데이터로 작업하기
2.2 큰 그림 보기
2.3 데이터 가져오기
2.4 데이터 이해를 위한 탐색과 시각화
2.5 머신러닝 알고리즘을 위한 데이터 준비
2.6 모델 선택과 훈련
2.7 모델 세부 튜닝
2.8 론칭, 모니터링, 그리고 시스템 유지 보수
2.9 직접 해보세요!
2.10 연습문제

3장. 분류
3.1 MNIST
3.2 이진 분류기 훈련
3.3 성능 측정
3.4 다중 분류
3.5 에러 분석
3.6 다중 레이블 분류
3.7 다중 출력 분류
3.8 연습문제

4장. 모델 훈련
4.1 선형 회귀
4.2 경사 하강법
4.3 다항 회귀
4.4 학습 곡선
4.5 규제가 있는 선형 모델
4.6 로지스틱 회귀
4.7 연습문제

5장. 서포트 벡터 머신
5.1 선형 SVM 분류
5.2 비선형 SVM 분류
5.3 SVM 회귀
5.4 SVM 이론
5.5 연습문제

6장. 결정 트리
6.1 결정 트리 학습과 시각화
6.2 예측하기
6.3 클래스 확률 추정
6.4 CART 훈련 알고리즘
6.5 계산 복잡도
6.6 지니 불순도 또는 엔트로피?
6.7 규제 매개변수
6.8 회귀
6.9 불안정성
6.10 연습문제

7장. 앙상블 학습과 랜덤 포레스트
7.1 투표 기반 분류기
7.2 배깅과 페이스팅
7.3 랜덤 패치와 랜덤 서브스페이스
7.4 랜덤 포레스트
7.5 부스팅
7.6 스태킹
7.7 연습문제

8장. 차원 축소
8.1 차원의 저주
8.2 차원 축소를 위한 접근 방법
8.3 PCA
8.4 커널 PCA
8.5 LLE
8.6 다른 차원 축소 기법
8.7 연습문제

2부. 신경망과 딥러닝

9장. 텐서플로 시작하기

9.1 설치
9.2 첫 번째 계산 그래프를 만들어 세션에서 실행하기
9.3 계산 그래프 관리
9.4 노드 값의 생애주기
9.5 텐서플로를 이용한 선형 회귀
9.6 경사 하강법 구현
9.7 훈련 알고리즘에 데이터 주입
9.8 모델 저장과 복원
9.9 텐서보드로 그래프와 학습 곡선 시각화하기
9.10 이름 범위
9.11 모듈화
9.12 변수 공유
9.13 연습문제

10장. 인공 신경망 소개
10.1 생물학적 뉴런에서 인공 뉴런까지
10.2 텐서플로의 고수준 API로 다층 퍼셉트론 훈련하기
10.3 텐서플로의 저수준 API로 심층 신경망 훈련하기
10.4 신경망 하이퍼파라미터 튜닝하기
10.5 연습문제

11장. 심층 신경망 훈련
11.1 그래디언트 소실과 폭주 문제
11.2 미리 훈련된 층 재사용하기
11.3 고속 옵티마이저
11.4 과대적합을 피하기 위한 규제 방법
11.5 실용적 가이드라인
11.6 연습문제

12장. 다중 머신과 장치를 위한 분산 텐서플로
12.1 단일 머신의 다중 장치
12.2 다중 머신의 다중 장치
12.3 텐서플로 클러스터에서 신경망 병렬화하기
12.4 연습문제

13장. 합성곱 신경망
13.1 시각 피질의 구조
13.2 합성곱층
13.3 풀링층
13.4 CNN 구조
13.5 연습문제

14장. 순환 신경망
14.1 순환 뉴런
14.2 텐서플로로 기본 RNN 구성하기
14.3 RNN 훈련하기
14.4 심층 RNN
14.5 LSTM 셀
14.6 GRU 셀
14.7 자연어 처리
14.8 연습문제

15장. 오토인코더
15.1 효율적인 데이터 표현
15.2 과소완전 선형 오토인코더로 PCA 수행하기
15.3 적층 오토인코더
15.4 적층 오토인코더를 사용한 비지도 사전훈련
15.5 잡음제거 오토인코더
15.6 희소 오토인코더
15.7 변이형 오토인코더
15.8 다른 오토인코더들
15.9 연습문제

16장. 강화 학습
16.1 보상을 최적화하기 위한 학습
16.2 정책 탐색
16.3 OpenAI 짐(Gym)
16.4 신경망 정책
16.5 행동 평가: 신용 할당 문제
16.6 정책 그래디언트
16.7 마르코프 결정 과정
16.8 시간차 학습과 Q-러닝
16.9 DQN 알고리즘으로 미스 팩맨 플레이 학습하기
16.10 연습문제

부록 A. 연습문제 정답
부록 B. 머신러닝 프로젝트 체크리스트
부록 C. SVM 쌍대 문제
부록 D. 자동 미분
부록 E. 유명한 다른 인공 신경망 구조

저자소개

오렐리앙 제롱(Aurelien Geron) [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 2종
판매수 456권

머신러닝 컨설턴트. 2013년에서 2016년까지 구글에서 유튜브 동영상 분류팀을 이끌었습니다. 2002년에서 2012년까지 프랑스의 모바일 ISP 선두 주자인 Wifirst를 설립하고 CTO로 일했습니다. 2001년에는 Polyconseil을 설립하고 CTO로 일했습니다. 이 회사는 지금 전기차 공유 서비스인 Autolib'을 운영하고 있습니다.
그 전에는 재무(JP 모건과 소시에테 제네랄), 방위(캐나다 DOD), 의료(수혈) 등 다양한 분야에서 엔지니어로 일했습니다. C++, WiFi, 인터넷 구조에 대한 몇 권의 기술 서적을 썼으며 한 프랑스 공과대학교에서 컴퓨터 과학을 가르쳤습니다.
재미있는 몇 가

펼쳐보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

기계공학을 전공했지만 졸업 후엔 대부분 코드를 읽고 쓰는 일을 했다. 텐서≈블로그(tensorflow.blog)와 홍대 머신러닝 스터디(meetup.com/Hongdae-Machine-Learning-Study/)를 운영하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. 『핸즈온 머신러닝』, 『파이썬 라이브러리를 활용한 머신러닝』, 『텐서플로 첫걸음』을 우리말로 옮겼다.

이벤트 기획전

이 책과 내용이 비슷한 책 ? 내용 유사도란? 이 도서가 가진 내용을 분석하여 기준 도서와 얼마나 많이 유사한 콘텐츠를 많이 가지고 있는가에 대한 비율입니다.

    리뷰

    0.0 (총 0건)

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    교환/환불

    교환/환불 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

    교환/환불 가능 기간

    고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

    교환/환불 비용

    고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

    교환/환불 불가사유

    반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
    배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

    소비자 피해보상

    소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
    교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

    기타

    도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

    배송안내

    • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

    • 배송비

    도서(중고도서 포함) 구매

    2,000원 (1만원이상 구매 시 무료배송)

    음반/DVD/잡지/만화 구매

    2,000원 (2만원이상 구매 시 무료배송)

    도서와 음반/DVD/잡지/만화/
    중고직배송상품을 함께 구매

    2,000원 (1만원이상 구매 시 무료배송)

    업체직접배송상품 구매

    업체별 상이한 배송비 적용