청구할인 안내(인터파크 제휴카드) | 안내
삼성카드 5% (3만원 이상 결제/최대 1만원 할인)
북피니언 롯데카드 30% (최대할인 3만원 / 3만원 이상 결제)
하나SK 북&카드 30% (최대할인 3만원 / 3만원 이상 결제)
EBS 롯데카드 20% (최대할인 3만원 / 3만원 이상 결제)
인터파크 NEW 우리V카드 10% (최대할인 3만원 / 3만원 이상 결제)
인터파크 현대카드 7% (최대할인 3만원 / 3만원 이상 결제)
Close

2013년 9월 9일 이후 누적수치입니다.

파이썬으로 구현하는 고급 머신 러닝 : 딥러닝을 포함한 최신 고급 머신 러닝 기술과 파이썬 활용

원제 : Advanced Machine Learning with Python : Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python
판매지수 832
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
정가

33,000원

  • 29,700 (10%할인)

    1,650P (5%적립)

  • (3건)

    29,670원 ~(10%할인)

    [특급]

  • 이 도서의 최대 매입가

    11,880

    인터파크에 판매하기
배송정보
주문수량
감소 증가
  • 이벤트/기획전(1)

  • 연관도서(293)

  • 사은품(2)

책소개

과거 오랜 기간 어려움을 겪었던 문제의 해결 방안이 등장하면서 최근 몇 년 사이 머신 러닝 분야는 발전 속도는 가히 폭발적이다. 특히 신경망 기반 접근 방법은 딥러닝이라는 기술로 큰 도약을 이뤘다 하겠다. 이 책에서는 이러한 머신 러닝에서 폭넓게 사용되는 핵심 알고리즘을 비롯해 최근 각광받고 있는 다양한 딥러닝 관련 대표 알고리즘들을 친절하고 자세하게 설명한다. 이미지 분류 등에서 높은 성능 향상을 보인 컨볼루션 신경망(CNN) 외에도 제한된 볼츠만 머신(RBM), 심층 신뢰망(DBN), SdA 등을 예제 데이터와 파이썬 코드를 이용해 직접 익힐 수 있게 한다. 뿐만 아니라 캐글(Kaggle)에서 높은 성능을 보인 기법도 쉽게 참고할 수 있게 한 점이 돋보인다. 참고 문헌으로 제공하는 풍부한 연구 지식을 통해서도 실력을 향상시킬 수 있을 것으로 기대한다.

출판사 서평

이 책에서 다루는 내용

- 첨단 딥러닝 알고리즘에 대한 실질적이고 이론적인 이해를 돕기 위한 최고 수준의 데이터 과학자의 성과 비교
- 모든 기술에 대해 깔끔하게 설명된 코드와 테스트 실행 결과를 통해 신규 기술이 실제로 접할 수 있는 문제의 적용과 해결
- 대규모의 복잡한 데이터 자동화와 이를 통해 장시간 작업을 필요로 하는 문제점의 극복 방안
- 강력한 피처 엔지니어링 기술을 사용한 기존의 입력 데이터와 분석 모델의 정확도 향상방법
- 분석 결과의 일관성을 향상시키기 위한 여러 가지 학습 기술 활용 방법
- 폭넓은 비지도 학습 기법을 이용해 데이터셋에 숨겨진 패턴/구조 분석과 이해
- 어렵고 과감한 도전이 필요한 문제에 대한 전문가들의 효과적이고 반복적으로 검증에 초점을 맞춘 방법 소개
- 여러 가지 분석 모델을 함께 묶어 활용하는 강력한 앙상블 기술을 통해 딥러닝 모델을 더 효과적으로 만드는 방법

이 책의 대상 독자

최근 몇 년 사이 급부상한 고급 분석 모델링 기술에 초점을 맞춰 이 책을 읽기 바란다. 이 책은 많은 경험을 보유한 데이터 과학자와 기존 기술을 새로운 환경에 적용하려는 개발자에 상관없이 고급 분석 알고리즘을 공부하고자 하는 독자 모두를 대상으로 한다.

이 책의 구성

1장, '비지도 머신 러닝'에서는 데이터셋에 담긴 패턴과 구조를 파악하기 위해 비지도 학습을 어떻게 적용하는지 알아본다.
2장, 'DBN(Deep Belief Networks)'에서는 RBM과 DBN 알고리즘이 어떻게 동작하는지 자세히 설명한다. 이를 어떻게 사용하는지 알게 될 것이다. 그리고 결과에 대한 퀄리티를 향상시킬 수 있는 능력도 확실히 얻을 수 있을 것이다.
3장, 'SdA'에서는 고차원 입력 데이터의 피처 모델 학습에 SdA를 적용하는 방법을 통해 딥 아키텍처 형태로 모델을 만드는 방법을 계속 살펴본다.
4장, '컨볼루션 신경망(CNN)'에서는 컨볼루션 신경망(Convnet)를 어떻게 적용하는지 소개한다.
5장, '준지도 학습'에서는 다양한 준지도 학습을 어떻게 적용하는지 설명한다. 주요 기법으로는 CPLE, 자가 학습(self-learning), S3VM 등이 있다
6장, '텍스트 피처 엔지니어링'에서는 앞에서 다룬 모델에 대한 효과를 더욱 높일 수 있도록 데이터를 잘 준비하는 기술에 대해 알아본다.
7장, '피처 엔지니어링 II'에서는 (1) 데이터 퀄리티 문제를 완화하거나, (2) 머신 러닝에 도움이 되는 형식으로 데이터를 변환하든지, 또는 (3) 해당 데이터를 창의적으로 향상시키기 위해 데이터를 자세히 조사하고 정보를 얻는 방법 등을 소개한다.
8장, '앙상블 기법'에서는 세련된 모델 앙상블을 구현하는 방법과 분석 모델 솔루션에 대한 로버스트니스를 갖게 하는 기법 등을 살펴본다.
9장, '파이썬 머신 러닝 관련 추가 툴'에서는 우선 데이터 과학자가 사용할 수 있는 최신 툴 중 어떤 것들이 있는지 자세히 알아본다. 또한 이러한 툴이 어떤 장점이 있는지도 확인한다. 이 외에도 이 책의 앞부분에서 소개하는 툴과 기술을 일관된 작업 프로세스에 어떻게 적용하는지에 대해서도 살펴본다.
부록, '장별 코드 준비 사항'에서는 장 별로 준비해야 하는 라이브러리들과 이 책을 학습하는 데 필요한 툴을 요약 정리한다.

목차

1장. 비지도 머신 러닝
__주성분 분석(PCA)
____PCA: 기초
____PCA 활용
__K-평균 클러스터링
____클러스터링: 기초
____클러스터링 분석
____클러스터링 환경 변수 튜닝
__SOM(Self-organizing maps)
____SOM 알고리즘의 기초
____SOM 알고리즘 활용
__참고 문헌
__요약

2장. 심층 신뢰망(DBN)
__신경망: 기본 개념
____신경망의 구성
____네트워크 토폴로지
__제한된 볼츠만 머신(RBM)
____RBM의 소개
______토폴로지
______학습
____RBM 애플리케이션
____RBM 애플리케이션 추가 사항
__심층 신뢰망(DBN)
____DBN 학습
____DBN 애플리케이션
____DBN 검증
__참고 문헌
__요약

3장. SdA
__오토인코더
____오토인코더 소개
______토폴로지
______학습
____dA
____dA 응용
__SdA
____SdA 응용
____SdA 성능 평가
__참고 문헌
__요약

4장. 컨볼루션 신경망(CNN)
__CNN의 소개
____컨볼루션 신경망 토폴로지
______컨볼루션 레이어
______풀링 레이어
______convnet 학습
______종합 정리
____CNN의 응용
__참고 문헌
__요약

5장. 준지도 학습
__소개
__준지도 학습의 이해
__준지도 학습 알고리즘의 실제
____자가 학습
______자가 학습 구현
______자가 학습 구현에 대한 세부 조정
__CPLE
__참고 문헌
__요약

6장. 텍스트 피처 엔지니어링
__소개
__텍스트 피처 엔지니어링
____텍스트 데이터 정제
______BeautifulSoup을 이용한 텍스트 정제
______구두점과 토큰화 관리
______단어의 태깅 및 카테고리화
____텍스트 데이터에서 피처 생성
____어근 추출
____배깅과 랜덤 포레스트
____준비된 데이터의 테스팅
__참고 문헌
__요약

7장. 피처 엔지니어링 II
__소개
__피처 세트 생성
____머신 러닝 애플리케이션을 위한 피처 엔지니어링
______피처의 학습 정도 향상을 위한 리스케일링 기술의 이용
______도출된 변수의 효과적인 생성
______숫자가 아닌 피처의 재해석
____피처 셀렉션 기술의 이용
______피처 셀렉션 수행
__실제 문제에서 피처 엔지니어링
____RESTful API를 통한 데이터 확보
______모델의 성능 테스트
______트위터
______피처 엔지니어링 기술을 이용한 변수 도출 및 선택
__참고 문헌
__요약

8장. 앙상블 기법
__앙상블의 소개
____평준화 기법
______배깅 알고리즘을 이용
______랜덤 포레스트를 사용
____부스팅 기법 응용
______XGBoost를 이용
______스태킹 앙상블 사용
____실제 문제에 앙상블 응용
__다이내믹 애플리케이션에서 모델 사용
____모델 로버스트니스 이해
______위험 요소 모델링 파악
____모델 로버스트니스 관리 전략
__참고 문헌
__요약

9장. 파이썬 머신 러닝 관련 추가 툴
__대안 개발 툴
____라자냐 소개
______라자냐 학습
____텐서플로 소개
______텐서플로 학습
______모델을 반복적으로 향상시키기 위한 텐서플로 사용
____라이브러리 사용 시 알아둘 점
__참고 문헌
__요약

본문중에서

머신 러닝 커뮤니티는 인기 있는 알고리즘이 정의되고 재발견되면서 트렌드를 파악하기 시작할 정도로 충분히 성숙했다. 이를 좀 더 정확하게 표현하자면 주요 리서치 커뮤니티의 기존 트렌드가 산업계에서 큰 주목을 받기 시작했다는 얘기다. 산업계 및 학계를 아우르는 머신 러닝 전문가 그룹이 되면서 말이다. 또 다른 결과로는 고급 알고리즘에 대한 인식 수준이 점점 높아지고 있다는 점이다. 이를 통해 오늘날 가장 최신의 문제를 해결하는 데 이러한 알고리즘이 사용되기도 한다. 매달 새로운 발전이 이뤄지고, 스코어가 올라가며 문제 해결 영역을 훨씬 더 넓혀가고 있다. 이것이 과연 무엇을 의미하는 걸까 데이터 과학 분야로 진출하고 머신 러닝 스킬셋을 개발하는 데 있어 지금이 가장 좋은 시점이라는 것이다. (클러스터링, 회귀 분석, 모델 신경망 아키텍처 같은) 기본 알고리즘과 툴은 웹 기반 온라인 강의와 각종 블로그 등을 통해 수많은 참고 자료들이 제공되고 있다. (딥러닝, 준지도형 학습 알고리즘, 앙상블 기법 같은) 데이터 과학의 첨단 기술은 여전히 접근이 쉽지 않지만, 기술 자체는 소프트웨어 라이브러리를 통해 여러 종류의 언어로 제공되고 있다. 필요한 것은 분석 모델을 제대로 구현하기 위한 이론적 지식과 실질적인 지침을 잘 결합하는 것이다. 이것이 바로 이 책을 통해 다루고자 하는 목표다. 좀 더 진보한 데이터 모델링 기술의 최신 정보를 얻고, 도전적인 난제를 해결하기 위해 이를 사용해 경험을 얻고자 한다면 이 책이 안성맞춤이라고 할 수 있다!
('지은이의 말' 중에서)

최근 10년은 머신 러닝 분야에 있어 가히 르네상스라 할 만하다. 특히 여기에 가장 큰 기여를 한 기술을 꼽는다면 단연 딥러닝이다. 아울러 GAN(Generative Adversarial Networks), RN(Relational Networks) 등은 향후 다양한 분야에서 큰 영향력을 발휘할 것으로 예상된다. 하지만 지금의 머신 러닝, 인공 지능의 대중화와 눈부신 발전은 오랜 기간 폭넓고 꾸준한 연구가 이뤄지지 않았다면 불가능했을 것이다. 이 책은 딥러닝의 대표 알고리즘들을 자세하게 설명하며 파이썬으로 직접 실습해볼 수 있도록 코드를 제공하고 있다. 특히 풍부한 최신 지식을 참고 자료로 제공하는 점이 무척 의미가 있다. 독자들이 이 책으로 꾸준히 학습해서 머신 러닝을 좀 더 잘 이해하고 다양하게 활용할 수 있기를 기대한다.
('옮긴이의 말' 중에서)

저자소개

존 하티(John Hearty) [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 1종
판매수 31권

디지털 회사의 컨설턴트로, 데이터 사이언스와 인프라스트럭처 엔지니어링 분야의 전문가다. 모바일 게임에서부터 미국 자동차 보험회사인 콘솔 분석에 AAA 관련된 고난도의 문제까지 다뤄왔다. 고급 머신 러닝 기술을 실제 문제에 적용하기 시작하면서 XBox 플랫폼에서 플레이어 모델링 기능과 대규모 데이터 인프라스트럭처를 개발하기 위해 마이크로소프트와 계약을 체결했다. 그가 속한 팀은 엔지니어링, 데이터 과학 분야에서 획기적인 진전을 이루며, 결과물에 대해 Microsoft Studio에서 복제해가기도 했다. 이러한 경험을 통해 결국 존은 새로운 통찰력이나 데이

펼쳐보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

고려대학교 컴퓨터학과(학사/석사)와 서던캘리포니아 대학교(석사)를 졸업하고, 플로리다 대학교에서 데이터 마이닝을 주제로 컴퓨터공학 박사 학위를 취득했다. 삼성SDS연구소에서 클라우드 컴퓨팅, 빅데이터 인프라 플랫폼, 데이터 과학/분석에 관한 다양한 최신 기술의 연구/개발 과제를 수행했다. 현재 아마존 웹 서비스(Amazon Web Services)에서 프로페셔널 서비스 빅데이터 컨설턴트(Professional Services Big Data Consultant)로 활동 중이다.

이벤트 기획전

이 상품의 시리즈

acorn+PACKT 시리즈(총 316권 / 현재구매 가능도서 294권)

펼쳐보기

리뷰

10.0 (총 0건)

기대평

작성시 유의사항

평점
0/200자
등록하기

기대평

0.0

교환/환불

교환/환불 방법

‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

교환/환불 가능 기간

고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

교환/환불 비용

고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

교환/환불 불가사유

반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

소비자 피해보상

소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

기타

도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

배송안내

  • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

  • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

  • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

  • 배송비

도서(중고도서 포함) 구매

2,000원 (1만원이상 구매 시 무료배송)

음반/DVD/잡지/만화 구매

2,000원 (2만원이상 구매 시 무료배송)

도서와 음반/DVD/잡지/만화/
중고직배송상품을 함께 구매

2,000원 (1만원이상 구매 시 무료배송)

업체직접배송상품 구매

업체별 상이한 배송비 적용