간편결제, 신용카드 청구할인
네이버페이 1%
(네이버페이 결제 시 적립)
NH(올원페이)카드 12% (31,680원)
(3만원 이상 결제/최대 1만원 할인)
북피니언 롯데카드 30% (25,200원)
(최대할인 3만원 / 3만원 이상 결제)
하나SK 북&카드 30% (25,200원)
(최대할인 3만원 / 3만원 이상 결제)
EBS 롯데카드 20% (28,800원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 NEW 우리V카드 10% (32,400원)
(최대할인 3만원 / 3만원 이상 결제)
인터파크 현대카드 7% (33,480원)
(최대할인 3만원 / 3만원 이상 결제)
Close

스칼라와 기계 학습 : 스칼라를 활용해 데이터에서 학습하는 시스템 만들기

원제 : Scala for Machine Learning

2013년 9월 9일 이후 누적수치입니다.

판매지수 14
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

40,000원

  • 36,000 (10%할인)

    2,000P (5%적립)

  • 이벤트/기획전(1)

  • 연관도서(322)

  • 사은품(2)

출판사 서평

요약
이 책은 알파고와 시리, 자율주행 자동차 등의 시스템을 구축할 때 기초가 될 수 있는 각종 데이터 처리 방법과 비감독 학습, 베이지안 분석, 회귀와 정규화, 은닉 마코프 모델, SVM, 인공 뉴럴 네트워크, 유전자 알고리즘, 강화 학습 등의 기계 학습 알고리즘의 수학적 모델을 설명하고, 스파크 등의 빅데이터 시스템에서 쓰이고 있는 스칼라 언어를 통해 구현한다. 또한 실제 미국 증시와 외환 시장에서 가져온 각종 금융 데이터에 각 기계 학습 알고리즘을 적용하면서 알고리즘들의 장단점과 한계 등을 설명한다. 독자들은 스칼라를 활용해 규모 확장성이 있는 기계 학습 시스템을 작성하고, 자신의 필요에 맞는 기계 학습 알고리즘을 평가하고 선택할 수 있는 방법을 배울 수 있다.

이 책에서 다루는 내용

- 과학기술 계산을 위한 동적인 워크플로우를 만드는 방법
- 오픈소스 라이브러리를 활용해 시계열 데이터에서 패턴을 추출하는 방법
- 분류, 군집화, 진화 알고리즘을 작성하는 방법
- 상대적인 성능 튜닝을 수행하는 방법과 스파크에 대한 평가
- 순차적 데이터에 대한 확률 모델
- 정규화나 커널화 등의 고급 기법을 활용한 실험
- 스칼라 병렬 컬렉션, 아카 액터, 아파치 스파크 클러스터 등을 활용해 빅데이터 문제를 푸는 방법
- 금융시장에 대한 기술적 분석에 핵심 기계 학습 전략 적용

이 책의 대상 독자

이 책은 어떻게 기계 학습 알고리즘을 구현하고, 검증하고, 응용할 수 있는지 배우고 싶어 하는 스칼라 프로그래밍에 경험이 있는 소프트웨어 개발자가 주 대상이다.
함수 프로그래밍에 대해 살펴보거나 스칼라를 활용해 기존 애플리케이션의 규모 확장성을 개선하고자 하는 데이터 과학자에게도 도움이 될 것이다.
이 책은 금융시장에 대한 기술 분석을 활용해 직접 짜면서 비교해볼 수 있는 연습 문제를 제공하는 자습서로 고안됐다.

이 책의 구성

1장, '시작하며'에서는 통계 분석, 자동 분류, 회귀분석, 예측, 클러스터링, 최적화의 기본 개념을 소개한다. 스칼라 언어 특징과 라이브러리를 간단한 애플리케이션 구현과 함께 다룬다.

2장, 'Hello World!'에서는 전형적인 자동 분류 워크플로우를 설명하고, 편향/분산(bias/variance)의 트레이드 오프(trade-off) 관계, 스칼라 의존성 삽입을 활용한 검증 방법을 금융시장 분석에 응용해 살펴본다.

3장, '데이터 전처리'에서는 시계열 분석에 대해 다루며, 스칼라를 활용해 데이터 전처리를 구현하고 이동 평균과 같은 평활 기법, 이산 푸리에 변환, 그리고 칼만 재귀 필터 등을 어떻게 간편하게 구현할 수 있는지 살펴본다.

4장, '비감독 학습'에서는 가장 널리 활용되는 클러스터링 기법인 K-평균법, 기대값 최대화(EM, Expectation Maximization) 구현, 차원 축소 방법인 주성분 분석에 대해 주로 살펴본다.

5장, '나이브 베이즈 분류기'에서는 확률 그래프 모델을 소개하고, 나이브 베이즈 분류기와 다변량 베르누이 분류기를 어떻게 구현하는지 텍스트마이닝 관점에서 살펴본다.

6장, '회귀분석과 정규화'에서는 전형적인 선형 회귀와 최소 제곱법 회귀, 릿지 회귀와 정규화 기법에 대해 다루고, 마지막으로 로지스틱 회귀에 대해 살펴본다.

7장, '순차적 데이터 모델'에서는 마르코프 프로세스를 은닉 마르코프 모델 구현 전체 과정과 함께 살펴보고, 금융시장 데이터에 대한 패턴 인식 과정에 응용해본 조건부 임의 필드(conditional random field) 기법에 대해서도 살펴본다.

8장, '커널 모델과 서포트 벡터 머신'에서는 커널 함수의 개념과 지지 벡터 머신 분류기 및 회귀분석 구현 방법을 살펴보고, 이진 SVM 분류기를 활용한 이상 탐지 방법도 살펴본다.

9장, '인공 뉴럴 네트워크'에서는 앞먹임(feed-forward) 신경망과 다층 퍼셉트론(multilayer perceptron) 분류기 구현 방법을 살펴본다.

10장, '유전자 알고리즘'에서는 진화 컴퓨팅의 기초를 다루며, 다목적 유전자 알고리즘 구성 요소 각각의 구현에 대해서 살펴본다.

11장, '강화 학습'에서는 강화 학습 개념을 소개하고, Q-학습 알고리즘 구현 방법을 학습 기반 분류 시스템을 구축하기 위한 템플릿과 함께 살펴본다.

12, '확장 가능한 프레임워크'에서는 기계 학습에서 규모 확장성이 있는 애플리케이션을 개발하기 위한 아티팩트와 프레임워크를 다룬다. 이를 통해 스칼라 병렬 컬렉션, 아카(Akka), 아파치 스파크(Spark) 프레임워크 등을 살펴볼 것이다.

부록 A, '기본 개념'에서는 이 책 전체에 쓰인 스칼라 구문, 선형대수 요소에 대해 다루고, 투자와 트레이딩 전략에 대해서도 간단히 소개한다.

부록 B, '참고 문헌'은 각 장에서 참고했던 문헌의 목록을 제공한다.

지은이의 말

하루라도 빅데이터에 대해 듣지 않고 그냥 지나가는 날이 없다. 뉴스 미디어, 기술 컨퍼런스, 심지어는 커피숍에서도 말이다. 프로세스 모니터링, 리서치 또는 단순한 인간 행동으로부터 수집되는 데이터양은 계속 증가하고 있지만, 이로부터 지식을 이끌어내야만 가치를 얻을 수 있다. 기계 학습은 데이터로부터 황금(지식)을 캐내는 데 있어 필수적인 도구다.
이 책은 '기계 학습이 무엇이고', '왜 스칼라를 선택했으며', '어떻게 활용하는지'에 대해 다룬다.

- 기계 학습의 목적 및 수학적 기초는 무엇인가?
- 기계 학습 알고리즘 구현에 스칼라가 왜 이상적인 프로그래밍 언어인가?
- 실제 문제 해결에 어떻게 기계 학습을 활용할 수 있을까?

이 책 전체에 걸쳐 기계 학습 알고리즘을 다이어그램, 수학 수식, 주석 달린 스칼라 코드 조각을 통해 설명할 것이며, 이를 통해 핵심 개념을 여러분 각자의 방식으로 이해하도록 도울 것이다.

옮긴이의 말

90년대 중반 AI 과목을 대학에서 들을 때만 해도 언제쯤 되야 컴퓨터가 바둑에서 인간을 이길 수 있을지 모르겠다는 이야기를 들었지만, 알파고가 이세돌 사범을 이기면서, 입신의 경지에 이른 기사들이 "알사범"이라고 알파고를 부르는 것을 직접 목도한 것이 불과 몇 개월 전이다. 인간의 모든 인지 사고 능력을 발휘하는 강 인공지능(Strong AI)까지는 아직 거리가 있을지 모르지만, 적어도 특정 분야에서 전문가와 비슷하거나 그 이상의 성능을 발휘하는 약 인공지능(Weak AI) 프로그램은 알파고와 같은 게임이나, 자동 주행 자동차, 각종 이미지 인식, 시리(Siri)와 같은 시스템, 전문가 시스템 등등 우리 삶의 곳곳에서 널리, 깊이 쓰이고 있다.
이런 변화에는 병렬 처리 기술과 딥러닝 등의 발달이 큰 역할을 했다. 또한, 이런 기계 학습 기법과 빅데이터의 방대한 데이터 처리 능력을 결합하면 이전에는 제공하지 못했던 가치있는 정보를 제공할 수 있고, 다양한 범위에서 사람들을 이롭게 할 수 있을 것이다. 이런 변화의 물결에 올라타기 위한 가장 좋은 도구 중 하나가 스칼라다. 스칼라를 활용하면 기존의 방대한 자바 에코시스템을 그대로 활용할 수 있으면서, 최근 빅데이터 처리의 킬러 앱 중 하나인 스파크(Spark)을 통해 큰 데이터를 쉽게 처리할 수 있다. 또한 스파크를 기반으로 요즘 활발하게 개발 중인 여러 기계 학습 알고리즘 라이브러리를 활용할 수도 있다.
이 책은 스칼라를 기계 학습에 활용하고 싶은 독자들에게 좋은 안내서가 될 것이다. 스칼라를 활용한 데이터 처리 기법이나 스파크에 대한 간략한 소개를 통해 기계 학습에 스칼라를 활용할 때 사용할 수 있는 기본적인 도구를 갖출 수 있다. 또한, 데이터 전처리, 비감독 학습, 베이지안 분석, 회귀와 정규화, 은닉 마코프 모델, SVM, 인공 뉴럴 네트워크, 유전자 알고리즘, 강화 학습 등의 수학적인 기초와 스칼라 구현 방법을 소개하며, 그 구현을 활용해 실제 금용 데이터의 트렌드를 어떻게 분석하는지를 보여줌으로써 실제 어떤 식으로 각종 알고리즘을 적용할 수 있고 각각의 장단점은 무엇인지를 배울 수 있다. 아무쪼록 이 책이 스칼라를 기계 학습에 활용하려고 마음먹은 여러 독자들에게 좋은 출발점이 되기를 바란다.

목차

1장. 시작하며
관심 있는 독자를 위한 수식 표기법
기계 학습이란 무엇인가
분류
예측
최적화
회귀
왜 스칼라인가
추상화
규모 확장성
설정성
유지 보수성(Maintainability)
요구불 연산
모델의 범주
기계 학습 알고리즘 분류체계
비감독 학습
군집화
차원 축소
감독 학습
생성 모델
식별 모델
강화 학습
도구 및 프레임워크
자바
스칼라
아파치 커먼스 수학(Apache Commons Math)
설명
라이선스
설치
JFreeChart
설명
라이선스
설치
기타 라이브러리 및 프레임워크
소스 코드
맥락과 뷰 바운드
코드 표시
기본 타입 및 암시
기본 타입
타입 변환
연산자
변경 불가능성
스칼라 이터레이터의 성능
최종 점검
계산 워크플로우 개요
간단한 워크플로우 작성
데이터 집합 선택
데이터 집합 적재
데이터 집합 전처리
모델 생성 (학습)
데이터 분류
요약

2장. Hello, World!
모델링
모델의 다른 이름
모델 vs. 설계
모델 특성 선택
특성 추출
워크플로우 설계
계산 프레임워크
파이프 연산자
모나딕 데이터 변환
의존관계 주입
워크플로우 모듈
워크플로우 팩토리
워크플로우 구성 요소 예제
전처리 모듈
군집화 모듈
모델 평가하기
검증
핵심 지표
구현
K-폴드 교차 검증
편향-분산 분해
과적합
요약

3장. 데이터 전처리
시계열
이동 평균
단순 이동 평균
가중 이동 평균
지수 이동 평균
푸리에 분석
이산 푸리에 변환(DFT)
DFT 기반 필터링
시장 사이클 감지하기
칼만 필터
상태 공간 추정
천이식
측정식
재귀 알고리즘
예측
보정
칼만 평활화
실험
다른 전처리 기법들
요약

4장. 비감독 학습
군집화
K-평균 군집화
유사도 측정하기
K-평균 알고리즘 개괄
1단계- 군집 설정
2단계- 군집 할당
3단계- 반복적인 재구축
차원의 저주
실험
군집의 개수 튜닝하기
검증
기대값 최대화 알고리즘
가우스 혼합 모델
EM 개괄
구현
테스트
온라인 EM
차원 축소
주성분 분석(PCA)
알고리즘
구현
테스트 케이스
평가
다른 차원 축소 기법
성능 고려 사항
K-평균
EM
PCA
요약

5장. 나이브 베이즈 분류기
확률적 그래프 모델
나이브 베이즈 분류기
다항 나이브 베이즈 소개
정식화
빈도주의자(frequentist)의 관점
예측 모델
0-빈도 문제
구현
소프트웨어 설계
훈련
분류
레이블 붙이기
결과
다변량 베르누이 분류
모델
구현
나이브 베이즈와 텍스트 마이닝
정보 추출의 기본
구현
용어 추출
용어 점수 매기기
테스트
텍스트 정보 가져오기
평가
장점과 단점
요약

6장. 회귀분석과 정규화
선형 회귀
1-변량 선형 회귀
구현
테스트 케이스
일반 최소 제곱 회귀
설계
구현
테스트 케이스 1- 추세
테스트 케이스 2- 특성 선택
정규화
Ln 거칠기 벌점
리지 회귀
구현
테스트 케이스
수치 최적화
로지스틱 회귀
로짓 함수
이항 분류
소프트웨어 설계
훈련 워크플로우
최소 제곱 최적화기 설정하기
자코비안 행렬 계산하기
종료 조건 정의하기
최소 제곱 문제 정의하기
손해 함수 최소화하기
테스트
분류
요약

7장. 순차적 데이터 모델
마코프 결정 과정
마코프 특성
1차 이산 마코프 체인
은닉 마코프 모델(HMM)
표기법
람다 모델
HMM 실행 상태
평가(CF-1)
알파 클래스(전방 변수)
베타 클래스(역방향 변수)
훈련(CF-2)
바움-웰치 추정기
디코딩(CF-3)
비터비 알고리즘
하나로 합치기
테스트 케이스
시계열 분석을 위한 은닉 마코프 모델
조건부 임의 필드
CRF 소개
선형 체인 CRF
CRF와 텍스트 분석
특성 함수 모델
소프트웨어 설계
구현
훈련 집합 만들기
태그 만들기
데이터 시퀀스 추출하기
CRF 제어 매개변수
하나로 합치기
테스트
훈련 수렴 프로파일
훈련 집합 크기에 따른 영향
L2 정규화 요소의 영향
CRF와 HMM 비교
성능상 고려
요약

8장. 커널 모델과 서포트 벡터 머신
커널 함수
개요
일반적인 판별 커널
서포트 벡터 머신
선형 SVM
분리 가능한 경우(하드 마진)
분리 불가능한 경우(소프트 마진)
비선형 SVM
최대 마진 분류
커널 트릭
서포트 벡터 분류기
이진 SVC
LIBSVM
소프트웨어 설계
설정 매개변수
SVM구현
C-벌점과 마진
커널 평가
위험 분석에 적용하기
1-분류 SVC를 사용해 변칙성 감지하기
서포트 벡터 회귀
개괄
SVR vs. 선형 회귀
성능상 고려할 점
요약

9장. 인공 뉴럴 네트워크
앞먹임 뉴럴 네트워크
생물학적 배경
수학적 배경
다층 퍼셉트론
활성화 함수
네트워크 구조
소프트웨어 설계
모델 정의
계층
시냅스
연결
훈련 사이클/에포크
1단계- 입력 전방 전파
2단계- 오차 제곱 합
3단계- 오차 역전파
4단계- 시냅스/가중치 조정
5단계- 수렴 기준
설정
한데 모으기
훈련 전략과 분류
온라인 vs. 배치 훈련
정규화
모델 인스턴스화
예측
평가
학습 비율의 효과
모멘텀 계수의 영향
테스트 케이스
구현
모델 평가
은닉 계층구조가 끼치는 영향
장점과 한계
요약

10장. 유전자 알고리즘
진화
기원
NP 문제
진화적 계산
유전자 알고리즘과 기계 학습
유전자 알고리즘의 구성 요소
인코딩
값 인코딩
술어 인코딩
해 인코딩
인코딩 방식
유전적 연산자
선택
교차
변이
적합도 점수
구현
소프트웨어 설계
핵심 구성 요소
선택
개체군 크기 증가 제어
GA 설정
교차
개체군
염색체
유전자
변이
개체군
염색체
유전자
번식 사이클
매매 전략을 위한 GA
매매 전략 정의
매매 연산자
비용/부적합도 함수
거래 신호
매매 전략
신호 인코딩
테스트 케이스
데이터 추출
초기 개체군
설정
GA 인스턴스화
GA 실행
테스트
유전자 알고리즘의 장점과 단점
요약

11장. 강화 학습
소개
문제
해법- Q-학습
용어
개념
정책의 값
벨만 최적화 공식
모델이 없는 학습의 시간적 차이
동작-값 반복 갱신
구현
소프트웨어 설계
상태와 동작
검색 공간0
정책과 동작-값
Q-학습 훈련
해결사 꼬리 재귀
예측
Q-학습을 사용한 옵션 거래
옵션의 속성
옵션 모델
함수 근사
제약이 가해진 상태 천이
한데 모으기
평가
강화 학습의 장점과 단점
학습 분류 시스템
LCS 소개
LCS를 사용하는 이유는 무엇인가
용어
확장 학습 분류 시스템
XCS 구성 요소들
포트폴리오 관리에 적용하기
XCS 코어 데이터
XCS 규칙
커버링
구현 예제
학습 분류 시스템의 장점과 한계
요약

12장. 확장 가능한 프레임워크
개요
스칼라
객체 생성 제어하기
병렬 컬렉션
병렬 컬렉션 처리하기
벤치마크 프레임워크
성능 평가
액터로 규모 확장하기
액터 모델
파티셔닝
액터를 넘어서- 반응형 프로그래밍
아카
마스터-작업자
메시지 교환
작업자 액터
워크플로우 컨트롤러
마스터 액터
마스터에서 라우팅 사용하기
분산 이산 푸리에 변환
한계
퓨처
액터의 생명주기
퓨처를 기다리며 블록하기
퓨처 콜백 처리하기
한데 모으기
아파치 스파크
스파크를 사용해야 하는 이유는 무엇인가
설계 원칙
인메모리 영속성
지연 계산
변환과 액션
공유 변수
스파크로 실험하기
스파크 배치하기
스파크 셀 사용하기
MLlib
RDD 생성
스파크를 사용한 K-평균
성능 평가
튜닝 가능한 요소
테스트
성능 고려 사항
장점과 단점
0xdata 스파클링 워터
요약

부록A. 기본 개념
스칼라 프로그래밍
라이브러리 목록
코드 조각의 서식
캡슐화
클래스 생성자 템플릿
동반 객체 vs. 케이스 클래스
열거형 vs. 케이스 클래스
오버로딩
분류기를 위한 설계 템플릿
데이터 추출
데이터 소스
문서 추출
행렬 클래스
수학
선형대수
QR 분해
LU 인수분해
LDL 분해
콜레스키 인수분해
특이 값 분해
고유값 분해
대수 및 수학 라이브러리
1차 술어 논리
자코비안 및 헤시안 행렬
최적화 기법 정리
기울기 하강 기법
쿼시-뉴튼 알고리즘
비선형 최소 제곱 최소화
라그랑주 승수
동적 프로그래밍 개요
금융 개론
기본적 분석
기술적 분석
용어
매매 신호 및 전략
가격 패턴
옵션 거래
금융 데이터 소스
추천 온라인 강좌
참고 문헌

부록B. 참고 문헌

저자소개

패트릭 니콜라스(Patrick R. Nicolas) [저] 신작알림 SMS신청 작가DB보기
생년월일 -
출생지 -
출간도서 0종
판매수 0권

캘리포니아 산타클라라에 있는 델(Dell)의 수석 R&D 엔지니어다. 소프트웨어 공학 분야에서 25년간 활동하며 C++, 자바, 스칼라를 활용한 대규모 애플리케이션을 구축했으며, 프로젝트 관리자 역할을 수행해왔다. 관심 분야는 실시간 분석, 모델링, 최적화 기법이다.

생년월일 -
출생지 -
출간도서 0종
판매수 0권

KAIST에서 전산학 학사와 석사 학위(프로그래밍 언어 연구실)를 취득했다. 삼성메디슨, 비트앤펄스 등에서 UI 개발자와 개발 팀장을 지냈고 호주에서 C++/풀스택 개발자로 일하고 있다. 웹과 모바일 등의 분야에서 값 중심 프로그래밍을 통해 오류 발생 가능성이 더 적으면서 유지보수가 편한 프로그램을 작성하는 방법과 이를 지원하는 여러 도구를 만드는 일에 관심이 많다. 최근에는 스칼라와 파이썬을 사용한 대규모 병렬 처리나 액터를 활용한 분산 처리 등을 공부하는 중이다.
[고성능 파이썬], [프로그래밍 스칼라](이상 한빛미디어), [Programming in Scala(3판

펼쳐보기

이벤트 기획전

이 상품의 시리즈

acorn+PACKT 시리즈(총 351권 / 현재구매 가능도서 321권)

펼쳐보기

이 책과 내용이 비슷한 책 ? 내용 유사도란? 이 도서가 가진 내용을 분석하여 기준 도서와 얼마나 많이 유사한 콘텐츠를 많이 가지고 있는가에 대한 비율입니다.

    리뷰

    0.0 (총 0건)

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    10.0

    교환/환불

    교환/환불 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청함, 1:1 문의 게시판 또는 고객센터(1577-2555) 이용 가능

    교환/환불 가능 기간

    고객변심은 출고완료 다음날부터 14일 까지만 교환/환불이 가능함

    교환/환불 비용

    고객변심 또는 구매착오의 경우에만 2,500원 택배비를 고객님이 부담함

    교환/환불 불가사유

    반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가할 수 있음
    배송된 상품의 분실, 상품포장이 훼손된 경우, 비닐랩핑된 상품의 비닐 개봉시 교환/반품이 불가능함

    소비자 피해보상

    소비자 피해보상의 분쟁처리 등에 관한 사항은 소비자분쟁해결기준(공정거래위원회 고시)에 따라 비해 보상 받을 수 있음
    교환/반품/보증조건 및 품질보증 기준은 소비자기본법에 따른 소비자 분쟁 해결 기준에 따라 피해를 보상 받을 수 있음

    기타

    도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 주문이 취소될 수 있음(이 경우 인터파크도서에서 고객님께 별도로 연락하여 고지함)

    배송안내

    • 인터파크 도서 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능하여, 인터파크 외 타업체 배송상품인 경우 발송되지 않을 수 있습니다.

    • 배송비

    도서(중고도서 포함) 구매

    2,000원 (1만원이상 구매 시 무료배송)

    음반/DVD/잡지/만화 구매

    2,000원 (2만원이상 구매 시 무료배송)

    도서와 음반/DVD/잡지/만화/
    중고직배송상품을 함께 구매

    2,000원 (1만원이상 구매 시 무료배송)

    업체직접배송상품 구매

    업체별 상이한 배송비 적용