¿Ü±¹µµ¼
´ëÇб³Àç/Àü¹®¼Àû
ÀÚ¿¬°úÇÐ/¼ø¼ö°úÇаè¿
Á¤°¡ |
41,000¿ø |
---|
41,000¿ø
1,230P (3%Àû¸³)
ÇÒÀÎÇýÅÃ | |
---|---|
Àû¸³ÇýÅà |
|
|
|
Ãß°¡ÇýÅÃ |
|
À̺¥Æ®/±âȹÀü
¿¬°üµµ¼
»óÇ°±Ç
ÀÌ»óÇ°ÀÇ ºÐ·ù
¸ñÂ÷
1. The Real and Complex Number Systems
2. Basic Topology
3. Numerical Sequences and Series
4. Continuity
5. Differentiation
6. The Riemann-Stieltjes Integral
7. Sequences and Series of Functions
8. Some Special Functions
9. Functions of Several Variables
10. Integration of Differential Forms
11. The Lebesgue Theory
Ã¥¼Ò°³
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.
This text is part of the Walter Rudin Student Series in Advanced Mathematics.
ÀúÀÚ¼Ò°³
»ý³â¿ùÀÏ | - |
---|
ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.
ÀúÀÚÀÇ ´Ù¸¥Ã¥
Àüüº¸±âÁÖ°£·©Å·
´õº¸±â»óÇ°Á¤º¸Á¦°ø°í½Ã
À̺¥Æ® ±âȹÀü
´ëÇб³Àç/Àü¹®¼Àû ºÐ¾ß¿¡¼ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥
ÆǸÅÀÚÁ¤º¸
»óÈ£ |
(ÁÖ)±³º¸¹®°í |
---|---|
´ëÇ¥ÀÚ¸í |
¾Èº´Çö |
»ç¾÷ÀÚµî·Ï¹øÈ£ |
102-81-11670 |
¿¬¶ôó |
1544-1900 |
ÀüÀÚ¿ìÆíÁÖ¼Ò |
callcenter@kyobobook.co.kr |
Åë½ÅÆǸž÷½Å°í¹øÈ£ |
01-0653 |
¿µ¾÷¼ÒÀçÁö |
¼¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù) |
±³È¯/ȯºÒ
¹ÝÇ°/±³È¯ ¹æ¹ý |
¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼ ½Åû °¡´É |
---|---|
¹ÝÇ°/±³È¯°¡´É ±â°£ |
º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É |
¹ÝÇ°/±³È¯ ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯ |
·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì |
»óÇ° Ç°Àý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½ |
¼ÒºñÀÚ ÇÇÇغ¸»ó |
·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© ó¸®µÊ ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀǼҺñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ |
¹è¼Û¾È³»
±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.
Ãâ°í°¡´É ½Ã°£ÀÌ ¼·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.
±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.
¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.