°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (37,050¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (27,300¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (31,200¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

Band Theory and Electronic Properties of Solids

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

ÆǸÅÁö¼ö 19
?
ÆǸÅÁö¼ö¶õ?
»çÀÌÆ®ÀÇ ÆǸŷ®¿¡ ±â¹ÝÇÏ¿© ÆǸŷ® ÃßÀ̸¦ ¹Ý¿µÇÑ ÀÎÅÍÆÄÅ© µµ¼­¿¡¼­ÀÇ µ¶¸³ÀûÀÎ ÆǸŠÁö¼öÀÔ´Ï´Ù. ÇöÀç °¡Àå Àß Æȸ®´Â »óÇ°¿¡ °¡ÁßÄ¡¸¦ µÎ¾ú±â ¶§¹®¿¡ ½ÇÁ¦ ´©Àû ÆǸŷ®°ú´Â ´Ù¼Ò Â÷ÀÌ°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÆǸŷ® ¿Ü¿¡µµ ´Ù¾çÇÑ °¡ÁßÄ¡·Î ±¸¼ºµÇ¾î ÃÖ±ÙÀÇ À̽´µµ¼­ È®Àνà À¯¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇØ´ç Áö¼ö´Â ¸ÅÀÏ °»½ÅµË´Ï´Ù.
Close
°øÀ¯Çϱâ
  • ÃâÆÇ»ç : Oxford U.K
  • ¹ßÇà : 2001³â 10¿ù 24ÀÏ
  • Âʼö : 0
  • ISBN : 9780198506447
Á¤°¡

39,000¿ø

  • 39,000¿ø

    1,170P (3%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
¹è¼ÛÁ¤º¸
  • Ç°Àý 
  • ¹«·á¹è¼Û
ÁÖ¹®¼ö·®
°¨¼Ò Áõ°¡
  • À̺¥Æ®/±âȹÀü

  • ¿¬°üµµ¼­

  • »óÇ°±Ç

AD

¸ñÂ÷

Metals: the Drude and Sommerfeld models 1 (15)
Introduction 1 (1)
What do we know about metals? 1 (1)
The Drude model 2 (2)
Assumptions 2 (1)
The relaxation-time approximation 3 (1)
The failure of the Drude model 4 (3)
Electronic heat capacity 4 (1)
Thermal conductivity and the 4 (2)
Wiedemann-Franz ratio
Hall effect 6 (1)
Summary 7 (1)
The Sommerfeld model 7 (6)
The introduction of quantum mechanics 7 (2)
The Fermi-Dirac distribution function 9 (1)
The electronic density of states 9 (1)
The electronic density of states at E 10 (1)
≈ EF
The electronic heat capacity 11 (2)
Successes and failures of the Sommerfeld 13 (3)
model
The quantum mechanics of particles in a 16 (7)
periodic potential: Bloch's theorem
Introduction and health warning 16 (1)
Introducing the periodic potential 16 (1)
Born-von Karman boundary conditions 17 (1)
The Schrodinger equation in a periodic 18 (1)
potential
Bloch's theorem 19 (1)
Electronic bandstructure 20 (3)
The nearly-free electron model 23 (9)
Introduction 23 (1)
Vanishing potential 23 (3)
Single electron energy state 23 (1)
Several degenerate energy levels 24 (1)
Two degenerate free-electron levels 24 (2)
Consequences of the nearly-free-electron 26 (6)
model
The alkali metals 27 (1)
Elements with even numbers of valence 27 (2)
electrons
More complex Fermi surface shapes 29 (3)
The tight-binding model 32 (9)
Introduction 32 (1)
Band arising from a single electronic level 32 (3)
Electronic wavefunctions 32 (1)
Simple crystal structure 33 (1)
The potential and Hamiltonian 33 (2)
General points about the formation of 35 (6)
tight-binding bands
The group IA and IIA metals; the 36 (1)
tight-binding model viewpoint
The Group IV elements 36 (1)
The transition metals 37 (4)
Some general points about bandstructure 41 (8)
Comparison of tight-binding and 41 (1)
nearly-free-electron bandstructure
The importance of K 42 (3)
hk is not the momentum 42 (1)
Group velocity 42 (1)
The effective mass 42 (1)
The effective mass and the density of 43 (1)
states
Summary of the properties of k 44 (1)
Scattering in the Block approach 45 (1)
Holes 45 (1)
Postscript 46 (3)
Semiconductors and Insulators 49 (16)
Introduction 49 (1)
Bandstructure of Si and Ge 50 (3)
General points 50 (1)
Heavy and light holes 51 (1)
Optical absorption 51 (1)
Constant energy surfaces in the 52 (1)
conduction bands of Si and Ge
Bandstructure of the direct-gap III-V and 53 (3)
II-VI semiconductors
Introduction 53 (1)
General points 53 (1)
Optical absorption and excitons 54 (1)
Excitons 55 (1)
Constant energy surfaces in direct-gap 56 (1)
III-V semiconductors
Thermal population of bands in 56 (9)
semiconductors
The law of mass action 56 (2)
The motion of the chemical potential 58 (1)
Intrinsic carrier density 58 (1)
Impurities and extrinsic carriers 59 (1)
Extrinsic carrier density 60 (2)
Degenerate semiconductors 62 (1)
Impurity bands 62 (1)
Is it a semiconductor or an insulator? 62 (1)
A note on photoconductivity 63 (2)
Bandstructure engineering 65 (20)
Introduction 65 (1)
Semiconductor alloys 65 (1)
Artificial structures 66 (9)
Growth of semiconductor multilayers 66 (2)
Substrate and buffer layer 68 (1)
Quantum wells 68 (1)
Optical properties of quantum wells 69 (1)
Use of quantum wells in opto-electronics 70 (1)
Superlattices 71 (1)
Type I and type II superlattices 71 (2)
Heterojunctions and modulation doping 73 (1)
The envelope-function approximation 74 (1)
Band engineering using organic molecules 75 (3)
Introduction 75 (1)
Molecular building blocks 75 (2)
Typical Fermi surfaces 77 (1)
A note on the effective dimensionality of 78 (1)
Fermi-surface sections
Layered conducting oxides 78 (3)
The Peierls transition 81 (4)
Measurement of bandstructure 85 (32)
Introduction 85 (1)
Lorentz force and orbits 85 (2)
General considerations 85 (1)
The cyclotron frequency 85 (2)
Orbits on a Fermi surface 87 (1)
The introduction of quantum mechanics 87 (4)
Landau levels 87 (2)
Application of Bohr's correspondence 89 (1)
principle to arbitrarily-shaped Fermi
surfaces in a magnetic field
Quantisation of the orbit area 90 (1)
The electronic density of states in a 91 (1)
magnetic field
Quantum oscillatory phenomena 91 (6)
Types of quantum oscillation 93 (1)
The de Haas-van Alphen effect 94 (2)
Other parameters which can be deduced 96 (1)
from quantum oscillations
Magnetic breakdown 97 (1)
Cyclotron resonance 97 (3)
Cyclotron resonance in metals 98 (1)
Cyclotron resonance in semiconductors 98 (2)
Interband magneto-optics in semiconductors 100(2)
Other techniques 102(3)
Angle-resolved photoelectron spectroscopy 103(1)
(ARPES)
Electroreflectance spectroscopy 104(1)
Some case studies 105(7)
Copper 105(1)
Recent controversy: Sr2RuO4 106(1)
Studies of the Fermi surface of an 106(6)
organic molecular metal
Quasiparticles: interactions between 112(5)
electrons
Transport of heat and electricity in metals 117(16)
and semiconductors
A brief digression; life without scattering 117(2)
would be difficult!
Thermal and electrical conductivity of 119(8)
metals
Metals: the `Kinetic theory' of electron 119(1)
transport
What do τ&sigma and τκ 120(2)
represent?
Matthiessen's rule 122(1)
Emission and absorption of phonons 122(1)
What is the characteristic energy of the 123(1)
phonons involved?
Electron-phonon scattering at room 123(1)
temperature
Electron-phonon scattering at T ≪ 123(1)
θD
Departures from the low temperature 124(1)
σα T-5 dependence
Very low temperatures and/or very dirty 124(1)
metals
Summary 125(1)
Electron-electron scattering 125(2)
Electrical conductivity of semiconductors 127(2)
Temperature dependence of the carrier 127(1)
densities
The temperature dependence of the mobility 128(1)
Disordered systems and hopping conduction 129(4)
Thermally-activated hopping 129(1)
Variable range hopping 130(3)
Magnetoresistance in three-dimensional systems 133(10)
Introduction 133(1)
Hall effect with more than one type of 133(2)
carrier
General considerations 133(2)
Hall effect in the presence of electrons 135(1)
and holes
A clue about the origins of 135(1)
magnetoresistance
Magnetoresistance in metals 135(4)
The absence of magnetoresistance in the 135(2)
Sommerfeld model of metals
The presence of magnetoresistance in real 137(1)
metals
The use of magnetoresistance in finding 138(1)
the Fermi-surface shape
The magnetophonon effect 139(4)
Magnetoresistance in two-dimensional systems 143(11)
and the quantum Hall effect
Introduction: two-dimensional systems 143(1)
Two-dimensional Landau-level density of 144(3)
states
Resistivity and conductivity tensors for 145(2)
a two-dimensional system
Quantisation of the Hall resistivity 147(2)
Localised and extended states 148(1)
A further refinement- spin splitting 148(1)
Summary 149(1)
The fractional quantum Hall effect 150(1)
More than one subband populated 151(3)
Inhomogeneous and hot carrier distributions 154(11)
in semiconductors
Introduction: inhomogeneous carrier 154(2)
distributions
The excitation of minority carriers 154(1)
Recombination 155(1)
Diffusion and recombination 155(1)
Drift, diffusion and the Einstein equations 156(2)
Characterisation of minority carriers; 156(2)
the Shockley-Haynes experiment
Hot carrier effects and ballistic transport 158(7)
Drift velocity saturation and the Gunn 158(2)
effect
Avalanching 160(1)
A simple resonant tunnelling structure 160(1)
Ballistic transport and the quantum point 161(4)
contact
A Useful terminology in condensed matter physics 165(7)
Introduction 165(1)
Crystal 165(1)
Lattice 165(1)
Basis 165(1)
Physical properties of crystals 166(1)
Unit cell 166(1)
Wigner-Seitz cell 167(1)
Designation of directions 167(1)
Designation of planes; Miller indices 168(1)
Conventional or primitive? 169(2)
The 14 Bravais lattices 171(1)
B Derivation of density of states in k-space 172(3)
Introduction 172(3)
Density of states 173(1)
Reading 174(1)
C Derivation of distribution functions 175(6)
Introduction 175(6)
Bosons 178(1)
Fermions 178(1)
The Maxwell-Boltzmann distribution 178(1)
function
Mean energy and heat capacity of the 179(2)
classical gas
D Phonons 181(10)
Introduction 181(1)
A simple model 182(3)
Extension to three dimensions 183(2)
The Debye model 185(6)
Phonon number 187(1)
Summary; the Debye temperature as a 188(1)
useful energy scale in solids
A note on the effect of dimensionality 188(3)
E The Bohr model of hydrogen 191(3)
Introduction 191(1)
Hydrogenic impurities 192(1)
Excitons 192(2)
F Experimental considerations in measuring 194(6)
resistivity and Hall effect
Introduction 194(1)
The four-wire method 194(2)
Sample geometries 196(1)
The van der Pauw method 197(1)
Mobility spectrum analysis 198(1)
The resistivity of layered samples 198(2)
G Canonical momentum 200(1)
H Superconductivity 201(4)
Introduction 201(1)
Pairing 201(2)
Pairing and the Meissner effect 203(2)
I List of selected symbols 205(4)
J Solutions and additional hints for selected 209(8)
exercises
Index 217

Ã¥¼Ò°³

This latest text in the new Oxford Master Series in Physics provides a much need introduction to band theory and the electronic properties of materials. Written for students in physics and material science, the book takes a pedagogical approach to the subject through the extensive use of illustrations, examples and problem sets. The author draws on his extensive experience teaching band theory to provide the reader with a thorough understanding of the field. Considerable attention is paid to the vocabulary and quantum-mechanical training necessary to learn about the electronic, optical and structural properties of materials in science and technology. The text also offers several chapters on the newest experimental techniques used to study band structure. Concise yet rigorous, it fills a long overdue gap between student texts and current research activities.

´ëÇб³Àç/Àü¹®¼­Àû ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

    ¸®ºä

    0.0 (ÃÑ 0°Ç)

    100ÀÚÆò

    ÀÛ¼º½Ã À¯ÀÇ»çÇ×

    ÆòÁ¡
    0/100ÀÚ
    µî·ÏÇϱâ

    100ÀÚÆò

    0.0
    (ÃÑ 0°Ç)

    ÆǸÅÀÚÁ¤º¸

    • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

    »óÈ£

    (ÁÖ)±³º¸¹®°í

    ´ëÇ¥ÀÚ¸í

    ¾Èº´Çö

    »ç¾÷ÀÚµî·Ï¹øÈ£

    102-81-11670

    ¿¬¶ôó

    1544-1900

    ÀüÀÚ¿ìÆíÁÖ¼Ò

    callcenter@kyobobook.co.kr

    Åë½ÅÆǸž÷½Å°í¹øÈ£

    01-0653

    ¿µ¾÷¼ÒÀçÁö

    ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

    ±³È¯/ȯºÒ

    ¹ÝÇ°/±³È¯ ¹æ¹ý

    ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

    ¹ÝÇ°/±³È¯°¡´É ±â°£

    º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
    ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

    ¹ÝÇ°/±³È¯ ºñ¿ë

    º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

    ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

    ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

    ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

    ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

    ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

    ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

    »óÇ° Ç°Àý

    °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

    ¼ÒºñÀÚ ÇÇÇغ¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

    ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

    ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

    (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
    (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

    ¹è¼Û¾È³»

    • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

    • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

    • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

    • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

    • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë