°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (51,300¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (37,800¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (43,200¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

From Neuron to Brain, 4/e

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

°øÀ¯Çϱâ
Á¤°¡

60,000¿ø

  • 54,000¿ø (10%ÇÒÀÎ)

    1,620P (3%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
¹è¼ÛÁ¤º¸
  • Ç°Àý 
  • ¹«·á¹è¼Û
ÁÖ¹®¼ö·®
°¨¼Ò Áõ°¡
  • À̺¥Æ®/±âȹÀü

  • ¿¬°üµµ¼­

  • »óÇ°±Ç

AD

¸ñÂ÷

PART 1 Introduction
Principles of Signaling and Organization 3 (22)
Signaling in Simple Neuronal Circuits 4 (1)
Complex Neuronal Circuitry in Relation to 4 (1)
Higher Functions
Organization of the Retina 5 (4)
Shapes and Connections of Neurons 5 (2)
Cell Body, Dendrites, and Axons 7 (1)
Techniques for Identifying Neurons and 8 (1)
Tracing Their Connections
Nonneuronal Cells 8 (1)
Grouping of Cells According to Function 8 (1)
Subtypes of Cells in Relation to Function 9 (1)
Convergence and Divergence of Connections 9 (1)
Signaling in Nerve Cells 9 (10)
Classes of Electrical Signals 10 (1)
Universality of Electrical Signals 10 (1)
Techniques for Recording Signals from 11 (1)
Neurons with Electrodes
Noninvasive Techniques for Recording 11 (1)
Neuronal Activity
Spread of Local Graded Potentials and 12 (2)
Passive Electrical Properties of Neurons
Spread of Potential Changes in Bipolar 14 (1)
Cells and Photo-receptors
Properties of Action Potentials 14 (1)
Propagation of Action Potentials along 15 (1)
Nerve Fibers
Action Potentials as the Neural Code 15 (1)
Synapses: The Sites for Cell-to-Cell 15 (1)
Communication
Chemically Mediated Synaptic Transmission 15 (1)
Excitation and Inhibition 16 (1)
Electrical Transmission 16 (1)
Modulation of Synaptic Efficacy 17 (1)
Integrative Mechanisms 18 (1)
Complexity of the Information Conveyed by 19 (1)
Action Potentials
Cellular and Molecular Biology of Neurons 19 (1)
Signals for Development of the Nervous 20 (1)
System
Regeneration of the Nervous System after 21 (4)
Injury
PART 2 Signaling in the Nervous System
Ion Channels and Signaling 25 (14)
Properties of Ion Channels 26 (3)
The Nerve Cell Membrane 26 (1)
What Does an Ion Channel Look Like? 27 (1)
Channel Selectivity 27 (1)
Open and Closed States 27 (1)
Modes of Activation 28 (1)
Measurement of Single-Channel Currents 29 (8)
Patch Clamp Recording 29 (1)
Recording Configurations with Patch 29 (2)
Electrodes
Intracellular Recording with 31 (1)
Microelectrodes
Intracellular Recording of Channel Noise 31 (2)
Channel Conductance 33 (1)
Conductance and Permeability 34 (1)
Equilibrium Potential 34 (1)
The Nernst Equation 35 (1)
Driving Force 36 (1)
Nonlinear Current-Voltage Relations 36 (1)
Ion Permeation through Channels 36 (1)
Significance of Ion Channels 37 (1)
Box 2.1 Measuring Channel Conductance 37 (2)
Structure of Ion Channels 39 (22)
The Nicotinic Acetylcholine Receptor 41 (8)
Physical Properties of the ACh Receptor 42 (1)
Amino Acid Sequence of AChR Subunits 43 (1)
Higher-Order Chemical Structure 44 (1)
Channel Structure and Function 44 (2)
Fetal and Adult ACh Receptors in 46 (1)
Mammalian Muscle
Which AChR Subunits Line the Pore? 47 (1)
High-Resolution Imaging of the ACh 47 (1)
Receptor
Open and Closed States of the ACh Receptor 48 (1)
Diversity of Neuronal AChR Subunits 49 (1)
Subunit Composition of Neuronal ACh 49 (1)
Receptors
A Receptor Superfamily 49 (1)
GABA, Glycine, and 5-HT Receptors 49 (1)
Ion Selectivity of Ligand-Gated Channels 50 (1)
Voltage-Activated Channels 50 (5)
The Voltage-Activated Sodium Channel 51 (1)
Amino Acid Sequence and Tertiary 51 (1)
Structure of the Sodium Channel
Voltage-Activated Calcium Channels 51 (1)
Voltage-Activated Potassium Channels 52 (1)
How Many Subunits Make a Potassium 53 (1)
Channel?
Pore Formation in Voltage-Activated 54 (1)
Channels
High-Resolution Imaging of a Potassium 54 (1)
Channel
Other Channels 55 (3)
Voltage-Activated Chloride Channels 55 (1)
Inward-Rectifying Potassium Channels 56 (1)
ATP-Activated Channels 56 (1)
Glutamate Receptors 56 (1)
Channels Activated by Cyclic Nucleotides 57 (1)
Diversity of Subunits 58 (1)
Conclusion 58
Cloning Receptors and Channels 40 (5)
Classification of Amino Acids 45 (1)
Expression of Receptors and Channels in 46 (15)
Xenopus Oocytes
Transport Across Cell Membranes 61 (16)
The Sodium-Potassium Exchange Pump 62 (2)
Biochemical Properties of 62 (1)
Sodium-Potassium ATPase
Experimental Evidence that the Pump Is 63 (1)
Electrogenic
Mechanism of Ion Translocation 63 (1)
Calcium Pumps 64 (2)
Sarcoplasmic and Endoplasmic Reticulum 66 (1)
Calcium ATPases
Plasma Membrane Calcium ATPase 66 (1)
Sodium-Calcium Exchange 66 (3)
The NCX Transport System 67 (1)
Reversal of Na-Ca Exchange 67 (2)
Sodium-Calcium Exchange in Retinal Rods 69 (1)
Chloride Transport 69 (1)
Chloride-Bicarbonate Exchange 69 (1)
Potassium-Chloride Cotransport 70 (1)
Inward Chloride Transport 70 (1)
Transport of Neurotransmitters 70 (2)
Transport into Presynaptic Vesicles 70 (1)
Transmitter Uptake 71 (1)
Molecular Structure of Transporters 72 (2)
ATPases 72 (1)
Sodium-Calcium Exchangers 72 (1)
Other Ion Transporters 73 (1)
Transport Molecules for Neurotransmitters 74 (1)
Significance of Transport Mechanisms 74 (3)
Ionic Basis of the Resting Potential 77 (14)
A Model Cell 78 (3)
Ionic Equilibrium 78 (1)
Electrical Neutrality 79 (1)
The Effect of Extracellular Potassium and 80 (1)
Chloride on Membrane Potential
Membrane Potentials in Squid Axons 81 (7)
The Effect of Sodium Permeability 83 (1)
The Constant Field Equation 84 (1)
The Resting Membrane Potential 85 (1)
Chloride Distribution 86 (1)
An Electrical Model of the Membrane 86 (1)
Predicted Values of Membrane Potential 87 (1)
Contribution of the Sodium-Potassium Pump 87 (1)
to the Membrane Potential
Ion Channels Associated with the Resting 88 (1)
Potential
Changes in Membrane Potential 88 (3)
Ionic Basis of the Action Potential 91 (22)
Sodium and Potassium Currents 92 (2)
How Many Ions Enter and Leave during an 93 (1)
Action Potential?
Positive and Negative Feedback during 93 (1)
Conductance Changes
Measuring Conductance 93 (1)
Voltage Clamp Experiments 94 (9)
Capacitative and Leak Currents 94 (1)
Currents Carried by Sodium and Potassium 95 (1)
Selective Poisons for Sodium and 96 (1)
Potassium Channels
Dependence of Ion Currents on Membrane 97 (1)
Potential
Inactivation of the Sodium Current 98 (2)
Sodium and Potassium Conductances as 100 (1)
Functions of Potential
Quantitative Description of Sodium and 101 (1)
Potassium Conductances
Reconstruction of the Action Potential 101 (1)
Threshold and Refractory Period 102 (1)
Gating Currents 103 (7)
Activation and Inactivation of Single 104 (1)
Channels
Molecular Mechanisms of Activation and 105 (1)
Inactivation
Gating of Voltage-Activated Channels 105 (1)
Sodium Channel Inactivation 106 (1)
Inactivation of Potassium A-Channels 107 (1)
Kinetic Models of Channel Activation and 108 (1)
Inactivation
Properties of Channels Associated with 109 (1)
the Action Potential
Other Potassium Channels Contributing to 109 (1)
Repolarization
The Role of Calcium in Excitation 110
Calcium Action Potentials 110 (1)
Calcium Ions and Excitability 110
The Voltage Clamp 95 (18)
Neurons as Conductors of Electricity 113 (20)
Passive Electrical Properties of Nerve and 114 (7)
Muscle Membranes
Nerve and Muscle Fibers as Cables 114 (1)
Flow of Current in a Cables 115 (1)
Input Resistance and Length Constant 116 (1)
Membrane Resistance and Longitudinal 116 (1)
Resistance
Calculating Membrane Resistance and 117 (1)
Internal Resistance
Specific Resistance 117 (1)
The Effect of Diameter on Cable 118 (1)
Characteristics
Membrane Capacitance 118 (2)
Time Constant 120 (1)
Capacitance in a Cable 121 (1)
Propagation of Action Potentials 121 (7)
Conduction Velocity 122 (1)
Myelinated Nerves and Saltatory Conduction 123 (1)
Conduction Velocity in Myelinated Fibers 123 (2)
Distribution of Channels in Myelinated 125 (1)
Fibers
Channels in Demyelinated Axons 125 (1)
Geometry and Conduction Block 126 (2)
Conduction in Dendrites 128 (1)
Pathways for Current Flow between Cells 128
Structural Basis for Electrical Coupling: 129
The Gap Junction
Electrotonic Potentials and the Membrane 120 (5)
Time Constant
Classification of Nerve Fibers in 125 (2)
Vertebrates
Stimulating and Recording with External 127 (3)
Electrodes
Current Flow Between Cells 130 (3)
Properties and Functions of Neuroglial Cells 133 (22)
Historical Perspective 134 (1)
Appearance and Classification of Glial 134 (2)
Cells
Structural Relations between Neurons and 136 (1)
Glia
Physiological Properties of Neuroglial Cell 137 (3)
Membranes
Ion Channels, Pumps, and Receptors in 138 (2)
Glial Membranes
Electrical Coupling between Glial Cells 140 (1)
Functions of Neuroglial Cells 140 (6)
Myelin and the Role of Neuroglial Cells 140 (2)
in Axonal Conduction
Glial Cells, CNS Development, and 142 (2)
Secretion of Growth Factors
Role of Microglial Cells in CNS Repair 144 (1)
and Regeneration
Schwann Cells as Pathways for Outgrowth 145 (1)
in Peripheral Nerves
A Cautionary Note 146 (1)
Effects of Neuronal Activity on Glial Cells 146 (4)
Potassium Accumulation in Extracellular 146 (1)
Space
Current Flow and Potassium Movement 147 (1)
through Glial Cells
Spatial Buffering of Extracellular 147 (1)
Potassium Concentration by Glia
Effects of Transmitters on Glial Cells 148 (1)
Release of Transmitters by Glial Cells 149 (1)
Calcium Waves in Glial Cells 149 (1)
Transfer of Metabolites from Glial Cells 150 (1)
to Neurons
Immediate Effects of Glial Cells on 150 (1)
Neuronal Signaling
Glial Cells and the Blood-Brain Barrier 150 (3)
Astrocytes and Blood Flow through the 153 (1)
Brain: A Speculation
Glial Cells and Immune Responses of the CNS 153
The Blos-Brain Barrier 151 (4)
Principles of Direct Synaptic Transmission 155 (22)
Nerve Cells and Synaptic Connections 156 (2)
Chemical Synaptic Transmission in the 157 (1)
Autonomic Nervous System
Chemical Synaptic Transmission at the 157 (1)
Vertebrate Skeletal Neuromuscular Junction
Electrical Synaptic Transmission 158 (2)
Identification and Characterization of 158 (1)
Electrical Synapses
Synaptic Delay at Chemical and Electrical 159 (1)
Synapses
Chemical Synaptic Transmission 160 (9)
Synaptic Structure 160 (2)
Synaptic Potentials at the Neuromuscular 162 (1)
Junction
Mapping the Region of the Muscle Fiber 163 (1)
Receptive to ACh
Other Techniques for Determining the 164 (2)
Distribution of ACh Receptors
Measurement of Ionic Currents Produced by 166 (1)
ACh
Significance of the Reversal Potential 167 (1)
Relative Contributions of Sodium, 167 (1)
Potassium, and Calcium to the End Plate
Poten

Ã¥¼Ò°³

From Neuron to Brain, Fourth Edition describes how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The emphasis, as before, is on experiments, and on the way they are carried out. Elements of format and presentation have been changed -- more headings have been introduced, the paragraphs are shorter, and the illustrations, now in full color, have been clarified. Intended for use in upper-level undergraduate, graduate, psychology, and medical school neuroscience courses, this book will be of interest to anyone who is curious about the workings of the nervous system.

ÀúÀÚ¼Ò°³

Nicholls, John G. (Edt)/ Martin, A. Robert/ Wallac [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

´ëÇб³Àç/Àü¹®¼­Àû ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

    ¸®ºä

    0.0 (ÃÑ 0°Ç)

    100ÀÚÆò

    ÀÛ¼º½Ã À¯ÀÇ»çÇ×

    ÆòÁ¡
    0/100ÀÚ
    µî·ÏÇϱâ

    100ÀÚÆò

    10.0
    (ÃÑ 0°Ç)

    ÆǸÅÀÚÁ¤º¸

    • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

    »óÈ£

    (ÁÖ)±³º¸¹®°í

    ´ëÇ¥ÀÚ¸í

    ¾Èº´Çö

    »ç¾÷ÀÚµî·Ï¹øÈ£

    102-81-11670

    ¿¬¶ôó

    1544-1900

    ÀüÀÚ¿ìÆíÁÖ¼Ò

    callcenter@kyobobook.co.kr

    Åë½ÅÆǸž÷½Å°í¹øÈ£

    01-0653

    ¿µ¾÷¼ÒÀçÁö

    ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

    ±³È¯/ȯºÒ

    ¹ÝÇ°/±³È¯ ¹æ¹ý

    ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

    ¹ÝÇ°/±³È¯°¡´É ±â°£

    º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
    ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

    ¹ÝÇ°/±³È¯ ºñ¿ë

    º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

    ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

    ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

    ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

    ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

    ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

    ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

    »óÇ° Ç°Àý

    °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

    ¼ÒºñÀÚ ÇÇÇغ¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

    ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

    ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

    (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
    (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

    ¹è¼Û¾È³»

    • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

    • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

    • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

    • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

    • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë