°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (173,400¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (152,520¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (146,020¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

Esd in Rf Technologies

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

°øÀ¯Çϱâ
Á¤°¡

188,160¿ø

  • 182,520¿ø (3%ÇÒÀÎ)

    5,480P (3%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
¹è¼ÛÁ¤º¸
  • 5/7(È­) À̳» ¹ß¼Û ¿¹Á¤  (¼­¿ï½Ã °­³²±¸ »ï¼º·Î 512)
  • ¹«·á¹è¼Û
ÁÖ¹®¼ö·®
°¨¼Ò Áõ°¡
  • À̺¥Æ®/±âȹÀü

  • ¿¬°üµµ¼­

  • »óÇ°±Ç

AD

¸ñÂ÷

Prefacep. xv
Acknowledgementsp. xxi
RF Design and ESDp. 1
Fundamental Concepts of ESD Designp. 1
Fundamental Concepts of RF ESD Designp. 4
Key RF ESD Contributionsp. 10
Key RF ESD Patentsp. 13
ESD Failure Mechanismsp. 13
RF CMOS ESD Failure Mechanismsp. 14
Silicon Germanium ESD Failure Mechanismsp. 15
Silicon Germanium Carbon ESD Failure Mechanisms in Silicon Germanium Carbon Devicesp. 15
Gallium Arsenide Technology ESD Failure Mechanismsp. 16
Indium Gallium Arsenide ESD Failure Mechanismsp. 16
RF Bipolar Circuits ESD Failure Mechanismsp. 17
RF Basicsp. 17
Two-Port Network Parametersp. 21
Z-Parametersp. 21
Y-Parametersp. 22
S-Parametersp. 22
T-Parametersp. 23
Stability: RF Design Stability and ESDp. 24
Device Degradation and ESD Failurep. 26
ESD-Induced D.C. Parameter Shift and Failure Criteriap. 26
RF Parameters, ESD Degradation, and Failure Criteriap. 28
RF ESD Testingp. 29
ESD Testing Modelsp. 29
RF Maximum Power-to-Failure and ESD Pulse Testing Methodologyp. 33
ESD-Induced RF Degradation and S-Parameter Evaluation Test Methodologyp. 37
Time Domain Reflectometry (TDR) and Impedance Methodology for ESD Testingp. 39
Time Domain Reflectometry (TDR) ESD Test System Evaluationp. 40
ESD Degradation System Level Method - Eye Testsp. 44
Product Level ESD Test and RE Functional Parameter Failurep. 46
Combined RF and ESD TLP Test Systemsp. 48
Closing Comments and Summaryp. 51
Problemsp. 52
Referencesp. 53
RF ESD Designp. 61
ESD Design Methods: Ideal ESD Networks and RF ESD Design Windowsp. 61
Ideal ESD Networks and the Current-Voltage d.c. Design Windowp. 61
Ideal ESD Networks in the Frequency Domain Design Windowp. 63
RF ESD Design Methods: Linearityp. 64
RF ESD Design: Passive Element Quality Factors and Figures of Meritp. 68
RF ESD Design Methods: Method of Substitutionp. 70
Method of Substitution of Passive Element to ESD Network Elementp. 71
Substitution of ESD Network Element to Passive Elementp. 72
RF ESD Design Methods: Matching Networks and RF ESD Networksp. 73
RF ESD Method - Conversion of Matching Networks to ESD Networksp. 74
RF ESD Method: Conversion of ESD Networks into Matching Networksp. 76
Conversion of ESD Networks into L-Match Networksp. 76
Conversion of ESD Networks into [Pi]-Match Networksp. 77
Conversion of ESD Networks into T-Match Networksp. 78
RF ESD Design Methods: Inductive Shuntp. 79
RF ESD Design Methods: Cancellation Methodp. 82
Quality Factors and the Cancellation Methodp. 82
Inductive Cancellation of Capacitance Load and Figures of Meritp. 83
Cancellation Method and ESD Circuitryp. 85
RF ESD Design Methods: Impedance Isolation Technique Using LC Resonatorp. 89
RF ESD Design Methods: Lumped versus Distributed Loadsp. 91
RF ESD Distributed Load with Coplanar Wave Guidesp. 92
RF ESD Distribution Coplanar Waveguides Analysis Using ABCD Matricesp. 93
ESD RF Design Synthesis and Floor Planning: RF, Analog, and Digital Integrationp. 95
ESD Power Clamp Placement Within a Domainp. 96
Power Bus Architecture and ESD Design Synthesisp. 97
V[subscript DD]-to-V[subscript SS] Power Rail Protectionp. 98
VoD-to-Analog Vdd and Vdo-Io-RF Vcc Power Rail Protectionp. 99
Interdomain BSD Protection Networksp. 100
ESD Circuits and RF Bond Pad Integrationp. 101
ESD Structures Under Wire Bond Padsp. 103
Summary and Closing Commentsp. 106
Problemsp. 106
Referencesp. 108
RF CMOS and ESDp. 111
RF CMOS: ESD Device Comparisonsp. 111
Circular RF ESD Devicesp. 116
RF ESD Design-ESD Wiring Designp. 118
RF Passives: ESD and Schottky Barrier Diodesp. 120
RF Passives: ESD and Inductorsp. 122
RF Passives: ESD and Capacitorsp. 127
Metal-oxide-Semiconductor and Metal-Insulator-Metal Capacitorsp. 128
Varactors and Hyper-Abrupt Junction Varactor Capacitorsp. 128
Metal-ILD-Metal Capacitorsp. 129
Vertical Parallel Plate (VPP) Capacitorsp. 130
Summary and Closing Commentsp. 131
Problemsp. 132
Referencesp. 133
RF CMOS ESD Networksp. 139
RF CMOS Input Circuitsp. 139
RF CMOS ESD Diode Networksp. 139
RF CMOS Diode String ESD Networkp. 143
RF CMOS: Diode-Inductor ESD Networksp. 145
RF Inductor-Diode ESD Networksp. 147
RF Diode-Inductor ESD Networksp. 148
RF CMOS Impedance Isolation LC Resonator ESD Networksp. 149
RF CMOS LC-Diode ESD Networksp. 150
RF CMOS Diode-LC ESD Networksp. 150
Experimental Results of the RF CMOS LC-Diode Networksp. 151
RF CMOS LNA ESD Designp. 152
RF LNA ESD Design: Low Resistance ESD Inductor and ESD Diode Clamping Elements in [Pi]-Configurationp. 153
RF CMOS T-Coil Inductor ESD Input Networkp. 157
RF CMOS Distributed ESD Networksp. 159
RF CMOS Distributed RF ESD Networksp. 159
RF CMOS Distributed RF ESD Networks using Series Inductor and Dual-Diode Shuntp. 160
RF CMOS Distributed RF ESD Networks using Series Inductor and MOSFET Parallel Shuntp. 163
RF CMOS Distributed ESD Networks: Transmission Lines and Coplanar Waveguidesp. 165
RF CMOS: ESD and RF LDMOS Power Technologyp. 167
RF CMOS ESD Power Clampsp. 170
RC-Triggered MOSFET ESD Power Clampp. 172
High Voltage RC-Triggered MOSFET ESD Power Clampp. 174
Voltage-Triggered MOSFET ESD Power Clampsp. 175
Summary and Closing Commentsp. 176
Problemsp. 177
Referencesp. 178
Bipolar Physicsp. 183
Bipolar Device Physicsp. 183
Bipolar Transistor Current Equationsp. 183
Bipolar Current Gain and Collector-to-Emitter Transportp. 184
Unity Current Gain Cutoff Frequencyp. 185
Unity Power Gain Cutoff Frequencyp. 186
Transistor Breakdownp. 186
Avalanche Multiplication and Breakdownp. 186
Bipolar Transistor Breakdownp. 188
Kirk Effectp. 190
Johnson Limit: Physical Limitations of the Transistorp. 191
Voltage-Frequency Relationshipp. 191
Johnson Limit Current-Frequency Formulationp. 193
Johnson Limit Power Formulationp. 194
RF Instability: Emitter Collapsep. 195
ESD RF Design Layout: Emitter, Base, and Collector Configurationsp. 201
ESD RF Design Layout: Utilization of a Second Emitter (Phantom Emitter)p. 204
ESD RF Design Layout: Emitter Ballastingp. 208
ESD RF Design Layout: Thermal Shunts and Thermal Lensesp. 210
Base-Ballasting and RF Stabilityp. 211
Summary and Closing Commentsp. 213
Problemsp. 213
Referencesp. 214
Silicon Germanium and ESDp. 217
Heterojunctions and Silicon Germanium Technologyp. 217
Silicon Germanium HBT Devicesp. 218
Silicon Germanium Device Structurep. 219
Silicon Germanium Physicsp. 221
Silicon Germanium Carbonp. 224
Silicon Germanium ESD Measurementsp. 226
Silicon Germanium Collector-to-Emitter ESD Stressp. 227
ESD Comparison of Silicon Germanium HBT and Silicon BJTp. 229
SiGe HBT Electrothermal Human Body Model (HBM) Simulation of Collector-Emitter Stressp. 232
Silicon Germanium Carbon Collector-Emitter ESD Measurementsp. 233
Silicon Germanium Transistor Emitter-Base Designp. 237
Epitaxial-Base Heterojunction Bipolar Transistor (HBT) Emitter-Base Designp. 238
Emitter-Base Design RF Frequency Performance Metricsp. 240
SiGe HBT Emitter-Base Resistance Modelp. 240
SiGe HBT Emitter-Base Design and Silicide Placementp. 241
Self-Aligned (SA) Emitter-Base Designp. 245
Non-self aligned (NSA) Emitter-Base Designp. 248
NSA Human Body Model (HBM) Step Stressp. 249
Transmission Line Pulse (TLP) Step Stressp. 250
RF Testing of SiGe HBT Emitter-Base Configurationp. 251
Unity Current Gain Cutoff Frequency-Collector Current Plotsp. 254
Silicon Germanium Carbon - ESD-Induced S-Parameter Degradationp. 256
Electrothermal Simulation of Emitter-Base Stressp. 258
Field-Oxide (FOX) Isolation Defined Silicon Germanium Heterojunction Bipolar Transistor HBM Datap. 259
Silicon Germanium HBT Multiple-Emitter Studyp. 260
Summary and Closing Commentsp. 262
Problemsp. 262
Referencesp. 263
Gallium Arsenide and ESDp. 269
Gallium Arsenide Technology and ESDp. 269
Gallium Arsenide Energy-to-Failure and Power-to-Failurep. 269
Gallium Arsenide ESD Failures in Active and Passive Elementsp. 272
Gallium Arsenide HBT Devices and ESDp. 273
Gallium Arsenide HBT Device ESD Resultsp. 274
Gallium Arsenide HBT Diode Stringsp. 275
Gallium Arsenide HBT-Based Passive Elementsp. 277
GaAs HBT Base-Collector Varactorp. 277
Gallium Arsenide Technology Table of Failure Mechanismsp. 279
Indium Gallium Arsenide and ESDp. 279
Indium Phosphide (InP) and ESDp. 281
Summary and Closing Commentsp. 281
Problemsp. 281
Referencesp. 282
Bipolar Receiver Circuits and Bipolar ESD Networksp. 287
Bipolar Receivers and ESDp. 287
Single Ended Common-Emitter Receiver Circuitsp. 288
Single-Ended Bipolar Receiver with D.C. Blocking Capacitorsp. 289
Single-Ended Bipolar Receiver with D.C. Blocking Capacitors and ESD Protectionp. 290
Bipolar Single-Ended Common-Emitter Receiver Circuit with Feedback Circuitp. 291
Bipolar Single-Ended Common-Emitter Circuit with Resistor Feedback Elementp. 291
Bipolar Single-Ended Common-Emitter Receiver Circuit with Resistor-Capacitor Feedback Elementp. 292
Bipolar Single-Ended Common-Emitter Receiver Circuit with Emitter Degenerationp. 293
Bipolar Single-Ended Common Emitter Circuit with Balun Outputp. 297
Bipolar Single-Ended Series Cascode Receiver Circuitsp. 298
Bipolar Differential Receiver Circuitsp. 300
Bipolar Differential Cascode Common-Emitter Receiver Circuitsp. 302
Bipolar ESD Input Circuitsp. 303
Diode-Configured Bipolar ESD Input Circuitsp. 307
Bipolar ESD Input: Resistor Grounded Base Bipolar ESD Inputp. 308
Bipolar-Based ESD Power Clampsp. 312
Bipolar Voltage-Triggered ESD Power Clampsp. 312
Zener Breakdown Voltage-Triggered ESD Power Clampsp. 312
BV[subscript CEO] Voltage-Triggered ESD Power Clampsp. 318
Mixed Voltage Interface Forward-Bias Voltage and BV[subscript CEO] Breakdown Synthesized Bipolar ESD Power Clampsp. 323
Ultra-Low Voltage Forward-Biased Voltage-Trigger BiCMOS ESD Power Clampsp. 328
Capacitively Triggered BiCMOS ESD Power Clampsp. 332
Bipolar ESD Diode String and Triple-Well Power Clampsp. 334
Summary and Closing Commentsp. 335
Problemsp. 335
Referencesp. 337
RF and ESD Computer-Aided Design (CAD)p. 339
RF ESD Design Environmentp. 339
Electrostatic Discharge and Radio Frequency (RF) Cosynthesis Design Methodsp. 339
ESD Hierarchical Pcell Physical Layout Generationp. 340
ESD Hierarchical Pcell Schematic Generationp. 341
ESD Design with Hierarchical Parameterized Cellsp. 341
Hierarchical Pcell Graphical Methodp. 342
Hierarchical Pcell Schematic Methodp. 344
ESD Design of RF CMOS-Based Hierarchical Parameterized Cellsp. 347
RF BiCMOS ESD Hierarchical Parameterized Cellp. 349
BiCMOS ESD Input Networksp. 350
BiCMOS ESD Rail-to-Railp. 353
BiCMOS ESD Power Clampsp. 354
Advantages and Limitations of the RF ESD Design Systemp. 359
Guard Ring P-Cell Methodologyp. 362
Guard Rings for Internal and External Latchup Phenomenap. 362
Guard Ring Theoryp. 363
Guard Ring Designp. 365
Guard Ring Characterizationp. 367
Summary and Closing Commentsp. 370
Problemsp. 370
Referencesp. 371
Alternative ESD Concepts: On-Chip and Off-Chip ESD Protection Solutionsp. 375
Spark Gapsp. 375
Field Emission Devicesp. 378
Field Emission Device (FED) as ESD Protectionp. 378
Field Emission Device in Gallium Arsenide Technologyp. 379
Field Emission Device Electronic Blunting Effectp. 380
Field Emission Device Multiemitter ESD Designp. 380
Field Emission Device (FED) ESD Design Practicesp. 382
Off-Chip Protection and Off-Chip Transient Suppression Devicesp. 382
Off-Chip Transient Voltage Suppression (TVS) Devicesp. 383
Off-Chip Polymer Voltage Suppression (PVS) Devicesp. 384
Package-Level Mechanical ESD Solutionsp. 386
RE Proximity Communications Chip-to-Chip ESD Design Practicesp. 387
Summary and Closing Commentsp. 388
Problemsp. 389
Referencesp. 389
Indexp. 391
Table of Contents provided by Ingram. All Rights Reserved.

Ã¥¼Ò°³

Electrostatic Discharge (ESD) within RF devices can result in the malfunctioning of nearby electronic equipment. This volume is designed as the third in a series of three books addressing Electrostatic Discharge (ESD) physics, devices, circuits and design. It will be the first book to address the increasingly important area of ESD within RF devices and circuits.

ÀúÀÚ¼Ò°³

Voldman, Stephen Howard [Àú] ½ÅÀ۾˸² SMS½Åû
»ý³â¿ùÀÏ -

ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

ÄÄÇ»ÅÍ ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

    ¸®ºä

    0.0 (ÃÑ 0°Ç)

    100ÀÚÆò

    ÀÛ¼º½Ã À¯ÀÇ»çÇ×

    ÆòÁ¡
    0/100ÀÚ
    µî·ÏÇϱâ

    100ÀÚÆò

    0.0
    (ÃÑ 0°Ç)

    ÆǸÅÀÚÁ¤º¸

    • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

    »óÈ£

    (ÁÖ)±³º¸¹®°í

    ´ëÇ¥ÀÚ¸í

    ¾Èº´Çö

    »ç¾÷ÀÚµî·Ï¹øÈ£

    102-81-11670

    ¿¬¶ôó

    1544-1900

    ÀüÀÚ¿ìÆíÁÖ¼Ò

    callcenter@kyobobook.co.kr

    Åë½ÅÆǸž÷½Å°í¹øÈ£

    01-0653

    ¿µ¾÷¼ÒÀçÁö

    ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

    ±³È¯/ȯºÒ

    ¹ÝÇ°/±³È¯ ¹æ¹ý

    ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

    ¹ÝÇ°/±³È¯°¡´É ±â°£

    º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
    ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

    ¹ÝÇ°/±³È¯ ºñ¿ë

    º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

    ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

    ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

    ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

    ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

    ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

    ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

    »óÇ° Ç°Àý

    °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

    ¼ÒºñÀÚ ÇÇÇغ¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

    ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

    ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

    (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
    (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

    ¹è¼Û¾È³»

    • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

    • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

    • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

    • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

    • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë