°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (68,720¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (50,640¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (57,870¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

Microcavities

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

°øÀ¯Çϱâ
Á¤°¡

90,410¿ø

  • 72,330¿ø (20%ÇÒÀÎ)

    2,170P (3%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
  • 5/10(±Ý) À̳» ¹ß¼Û ¿¹Á¤  (¼­¿ï½Ã °­³²±¸ »ï¼º·Î 512)
  • ¹«·á¹è¼Û
  • ÁÖ¹®¼ö·®
    °¨¼Ò Áõ°¡
    • À̺¥Æ®/±âȹÀü

    • ¿¬°üµµ¼­

    • »óÇ°±Ç

    AD

    ¸ñÂ÷

    Overview of Microcavities 1
    Properties of microcavities 2
    Q-factor and finesse 2
    Intracavity field enhancement and field distribution 3
    Tuneability and mode separation 3
    Angular mode pattern 4
    Low-threshold lasing 4
    Purcell factor and lifetimes 5
    Strong vs. weak coupling 5
    Microcavity realizations 5
    Planar microcavities 6
    Metal microcavities 8
    Dielectric Bragg mirrors 9
    Spherical mirror microcavities 10
    Pillar microcavities 12
    Whispering-gallery modes 15
    Two-dimensional whispering galleries 16
    Three-dimensional whispering-galleries 18
    Photonic-crystal cavities 19
    Random lasers 20
    Plasmonic cavities 20
    Microcavity lasers 21
    Conclusion 21
    Classical description of light 23
    Free space 24
    Light-field dynamics in free space 24
    Propagation in crystals 27
    Plane waves in bulk crystals 27
    Absorption of light 31
    Kramers-Kronig relations 32
    Coherence 32
    Statistical properties of light 32
    Spatial and temporal coherence 33
    Wiener-Khinchin theorem 38
    Hanbury Brown-Twiss effect 41
    Polarization-dependent optical effects 43
    Birefringence 43
    Magneto-optical effects 44
    Propagation of light in multilayer planar structures 45
    Photonic eigenmodes of planar systems 49
    Photonic bands of 1D periodic structures 52
    Planar microcavities 59
    Stripes, pillars, and spheres: photonic wires and dots 64
    Cylinders and pillar cavities 66
    Spheres 69
    Further reading 73
    Quantum description of light 75
    Pictures of quantum mechanics 76
    Historical background 76
    Schrodinger picture 76
    Antisymmetry of the wavefunction 85
    Symmetry of the wavefunction 86
    Heisenberg picture 88
    Dirac (interaction) picture 93
    Other formulations 95
    Density matrix 95
    Second quantization 97
    Quantization of the light field 99
    Quantum states 100
    Fock states 100
    Coherent states 101
    Glauber-Sudarshan representation 102
    Thermal states 103
    Mixture states 105
    Quantum correlations of quantum fields 106
    Statistics of the field 110
    Polarization 113
    Outlook on quantum mechanics for microcavities 115
    Further reading 116
    Semiclassical description of light-matter coupling 117
    Light-matter interaction 118
    Classical limit 118
    Einstein coefficients 120
    Optical transitions in semiconductors 123
    Excitons in semiconductors 127
    Frenkel and Wannier-Mott excitons 127
    Excitons in confined systems 131
    Quantum wells 132
    Quantum wires and dots 135
    Exciton-photon coupling 137
    Surface polaritons 140
    Exciton-photon coupling in quantum wells 142
    Exciton-photon coupling in quantum wires and dots 147
    Dispersion of polaritons in planar microcavities 150
    Motional narrowing of cavity polaritons 160
    Microcavities with quantum wires or dots 164
    Quantum description of light-matter coupling in semiconductors 169
    Historical background 170
    Rabi dynamics 170
    Bloch equations 173
    Full quantum picture 176
    Dressed bosons 179
    Lindblad dissipation 187
    Jaynes-Cummings model 192
    Dicke model 198
    Excitons in semiconductors 199
    Quantization of the exciton field 200
    Excitons as bosons 202
    Excitons in quantum dots 202
    Exciton-photon coupling 208
    Dispersion of polaritons 210
    The polariton Hamiltonian 211
    Coupling in quantum dots 213
    Weak-coupling microcavities 215
    Purcell effect 216
    The physics of weak coupling 216
    Spontaneous emission 217
    The case of QDs, 2D excitons and 2D electron-hole pairs 219
    Fermi's golden rule 220
    Dynamics of the Purcell effect 223
    Case of QDs and QWs 225
    Experimental realizations 226
    Lasers 228
    The physics of lasers 229
    Semiconductors in laser physics 233
    Vertical-cavity surface-emitting lasers 236
    Resonant-cavity LEDs 240
    Quantum theory of the laser 241
    Nonlinear optical properties of weak-coupling microcavities 246
    Bistability 247
    Phase matching 249
    Conclusion 249
    Strong coupling: resonant effects 251
    Optical properties background 252
    Quantum well microcavities 252
    Variations on a theme 254
    Motional narrowing 256
    Polariton emission 256
    Near-resonant-pumped optical nonlinearities 258
    Pulsed stimulated scattering 258
    Quasimode theory of parametric amplification 263
    Microcavity parametric oscillators 265
    Resonant excitation case and parametric amplification 268
    Semiclassical description 268
    Stationary solution and threshold 269
    Theoretical approach: quantum model 270
    Three-level model 271
    Threshold 274
    Two-beam experiment 274
    One-beam experiment and spontaneous symmetry breaking 274
    Dressing of the dispersion induced by polariton condensates 276
    Bistable behaviour 277
    Strong coupling: polariton Bose condensation 279
    Introduction 280
    Basic ideas about Bose-Einstein condensation 280
    Einstein proposal 280
    Experimental realization 282
    Modern definition of Bose-Einstein condensation 283
    Specificities of excitons and polaritons 284
    Thermodynamic properties of cavity polaritons 285
    Interacting bosons and Bogoliubov model 286
    Polariton superfluidity 289
    Quasicondensation and local effects 292
    High-power microcavity emission 294
    Thresholdless polariton lasing 297
    Kinetics of formation of polariton condensates: semiclassical picture 302
    Qualitative features 302
    The semiclassical Boltzmann equation 305
    Numerical solution of Boltzmann equations, practical aspects 307
    Effective scattering rates 307
    Numerical simulations 308
    Kinetics of formation of polariton condensates: quantum picture in the Born-Markov approximation 310
    Density matrix dynamics of the ground-state 312
    Discussion 316
    Coherence dynamics 317
    Kinetics of formation of polariton condensates: quantum picture beyond the Born-Markov approximation 319
    Two-oscillator toy theory 319
    Coherence of polariton-laser emission 329
    Numerical simulations 335
    Order parameter and phase diffusion coefficient 336
    Semiconductor luminescence equations 338
    Claims of exciton and polariton Bose-Einstein condensation 341
    Further reading 342
    Spin and polarization 345
    Spin relaxation of electrons, holes and excitons in semiconductors 346
    Microcavities in the presence of a magnetic field 351
    Resonant Faraday rotation 352
    Spin relaxation of exciton-polaritons in microcavities: experiment 355
    Spin relaxation of exciton-polaritons in microcavities: theory 360
    Optical spin Hall effect 364
    Optical induced Faraday rotation 366
    Interplay between spin and energy relaxation of exciton-polaritons 368
    Polarization of Bose condensates and polariton superfluidity 372
    Magnetic-field effect and superfluidity 374
    Finite-temperature case 378
    Spin dynamics in parametric oscillators 381
    Classical nonlinear optics consideration 381
    Polarized OPO: quantum model 383
    Conclusions 385
    Further reading 386
    Glossary 387
    Linear algebra 395
    Scattering rates of polariton relaxation 399
    Polariton-phonon interaction 399
    Interaction with longitudinal optical phonons 400
    Interaction with acoustic phonons 401
    Polariton-electron interaction 402
    Polariton-polariton interaction 404
    Polariton decay 404
    Polariton-structural-disorder interaction 405
    Derivation of the Landau criterion of superfluidity and Landau formula 407
    Landau quantization and renormalization of Rabi splitting 409
    References 413

    Ã¥¼Ò°³

    Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. Microcavities addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc.

    Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.

    ÀúÀÚ¼Ò°³

    Alexey Kavokin [Àú] ½ÅÀ۾˸² SMS½Åû
    »ý³â¿ùÀÏ -

    ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

    ´ëÇб³Àç/Àü¹®¼­Àû ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

      ¸®ºä

      0.0 (ÃÑ 0°Ç)

      100ÀÚÆò

      ÀÛ¼º½Ã À¯ÀÇ»çÇ×

      ÆòÁ¡
      0/100ÀÚ
      µî·ÏÇϱâ

      100ÀÚÆò

      0.0
      (ÃÑ 0°Ç)

      ÆǸÅÀÚÁ¤º¸

      • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

      »óÈ£

      (ÁÖ)±³º¸¹®°í

      ´ëÇ¥ÀÚ¸í

      ¾Èº´Çö

      »ç¾÷ÀÚµî·Ï¹øÈ£

      102-81-11670

      ¿¬¶ôó

      1544-1900

      ÀüÀÚ¿ìÆíÁÖ¼Ò

      callcenter@kyobobook.co.kr

      Åë½ÅÆǸž÷½Å°í¹øÈ£

      01-0653

      ¿µ¾÷¼ÒÀçÁö

      ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

      ±³È¯/ȯºÒ

      ¹ÝÇ°/±³È¯ ¹æ¹ý

      ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

      ¹ÝÇ°/±³È¯°¡´É ±â°£

      º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
      ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

      ¹ÝÇ°/±³È¯ ºñ¿ë

      º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
      »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

      ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

      ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
      (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

      ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

      ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

      ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

      ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

      »óÇ° Ç°Àý

      °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

      ¼ÒºñÀÚ ÇÇÇغ¸»ó
      ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

      ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

      ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

      (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

      (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
      (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

      ¹è¼Û¾È³»

      • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

      • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

      • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

      • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

      • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë