간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (32,490원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (23,940원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (27,360원)
(최대할인 4만원 / 2만원 이상 결제)
Close

실전 시계열 분석 : 통계와 머신러닝을 활용한 예측 기법[초판]

원제 : Practical Time Series Analysis
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 60
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

38,000원

  • 34,200 (10%할인)

    1,900P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 3/25(토) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서

  • 상품권

AD

라이브북

책소개

시계열 분석의 모든 것
실제 환경에 특화된 시계열 데이터 분석 및 모범 사례를 다루는 실무 지침서다. ARIMA 및 베이즈 상태 공간 같은 표준적인 통계 모델과 계층형 모델을 폭넓게 다루고, 시계열 데이터 모델링의 현대적인 파이프라인 전체를 실용적인 관점에서 안내한다. 이 책에 담긴 통계와 머신러닝 기술을 활용하면 데이터 엔지니어링 및 분석 과제를 해결하는 방법을 익히고, 시계열 데이터의 핵심을 꿰뚫어볼 수 있는 시각을 얻을 수 있을 것이다.

출판사 서평

아마존 데이터 웨어하우스 분야 1위
시계열 데이터 분석을 A부터 Z까지 다루는 실전 가이드

시계열 분석은 기상청, 금융ㆍ정부 기관 등 우리 실생활과 밀접한 곳에서 미래를 예측하고 대비하기 위해 사용됩니다. 시계열 데이터는 사물인터넷으로 인한 데이터 대량 생산, 헬스케어 분야의 디지털 전환, 스마트 도시의 부상 등으로 중요성이 더 커지고 있으며, 그 영향력이 모든 산업 분야로 확장될 것입니다.

이 책은 정확한 시계열 분석과 예측을 위해 시계열 데이터와 모델링의 파이프라인 전체(획득, 정리, 시뮬레이션, 저장, 모델링)를 실용적인 관점에서 폭넓게 바라보고 R과 파이썬 코드를 곁들여 설명합니다. 전반부에서는 시계열 예측의 전체 과정을 이해하는 데 기본이 되는 개념을 소개합니다. 시계열 데이터의 탐색, 수집, 정리와 ARIMA, SARIMA 모델 등을 다룹니다. 후반부에서는 MXNet과 텐서플로를 활용하여 헬스케어, 금융, 정부 데이터의 연구 사례에 시계열 기법을 대입하는 방법을 배우고 저자의 풍부한 경험을 녹여낸 다양한 예제도 소개합니다.

마지막으로 각 장에 해당하는 주제와 필수 기법에 대한 튜토리얼을 제공하는 링크를 수록했습니다. 이 책 한 권이면 실세계에서 시계열 데이터를 활용하여 시계열을 분석하고 예측하기 위한 준비를 마칠 수 있습니다. 이 실전 가이드로 시계열 예측의 정확도를 높일 수 있길 바랍니다.

주요 내용
● 시계열 데이터 탐색 및 정리
● 탐색적 시계열 데이터 분석 수행
● 시간 데이터 저장
● 시계열 데이터 시뮬레이션
● 시계열 기능 생성 및 선택
● 측정 오류
● 머신러닝과 딥러닝을 활용한 시계열 예측 및 분류
● 정확도 및 성능 평가

예제 코드
github.com/deep-diver/practical-time-series-analysis-korean

추천사

임대경(P&G Korea 데이터 사이언티스트)
파이썬과 R 코드를 번갈아 가며 사용합니다. 두 언어 중 한 언어에만 익숙한 독자도 이 책을 볼 수 있습니다. R 코드가 전반적으로 많지만 상세한 설명 덕분에 파이썬으로 쉽게 적용할 수 있습니다. 시계열 분석의 기본적인 부분을 전반적으로 잘 다룹니다. 매우 구조적이고 이해하기 쉽게 쓰였으며 디테일도 놓치지 않았습니다. 원서를 읽을 때는 좀 장황하다는 느낌을 받았지만 역자가 우리말로 옮길 때 이런 부분을 최대한 분명하게 표현하고자 노력했고, 번역서에서 흔히 발견되는 번역 투 표현을 최대한 깔끔하게 다듬었습니다. 마치 국내 저자가 저술한 서적처럼 깔끔하게 읽힙니다. 시계열 분석의 개념을 실무에 적용할 때 참조하기 위한 첫 번째 실전서로 추천합니다.

이제현(한국에너지기술연구원)
누구나 잘못된 일기예보 때문에 낭패를 겪고 짜증을 낸 경험이 있을 것입니다. 하지만 시계열 모델을 한 번쯤 만든 경험이 있는 사람이라면 미래를 예측하는 일이 얼마나 어려운지 알기에 기상청에서 일하는 분들을 응원할 것입니다. 이 책은 회귀부터 딥러닝까지의 기법들을 숨 가쁘게 몰아치며 설명합니다. 오차를 다루는 대목쯤 되면 지칠 수도 있지만, 이 책의 역할은 방대한 시계열의 입구라는 사실을 명심하기 바랍니다. 여느 책과 달리 참고 문헌을 인용하는 것으로 그치지 않고 R과 파이썬을 MXNet과 텐서플로를 넘나들며 내용을 하나하나 설명합니다. 이 책을 덮는 순간부터 본격적인 시계열 공부가 시작될 겁니다. 시계열에 발을 딛는 모든 분의 무운(武運)을 기원합니다.

시한(VAIS 인공지능 커뮤니티 운영진)
인터넷 시대가 도래한 이후, 우리는 무수하게 쏟아지는 데이터 속에 살고 있습니다. 이 중에는 이미지 같은 정형 데이터도 있고 매일 겪는 날씨, 계절, 교통량 등 정해진 형태는 없지만 시간에 인과를 가진 데이터들도 있습니니다. 알파고에서 시작된 인공지능 붐 속에서 주류는 정형 데이터였고, 이후 정형 데이터를 가공하는 법을 알려주는 많은 책이 출간되었습니다. 하지만 시계열 데이터는 책의 한 챕터만 다루는 등 아쉬움이 많았습니다. 우리에게 중요한 것은 어떤 모델의 사용이 아니라 데이터에 맞는 가공법을 찾는 것입니다. 이 책은 시계열 형태라는 공통점만 가진 자료들을 데이터에 맞게 가공하고 사용하는 직관을 키우는 가이드입니다.

heroseo(캐글 마스터)
시계열 문제를 처음 접하는 시린이(시계열 분석 어린이)라면 시계열 데이터라는 개념 자체가 굉장히 생소하게 느껴질 겁니다. 이 책에서 제공하는 시계열 데이터의 기본 개념과 코드를 실전에 활용하면 시계열 문제에 대한 감을 익힐 수 있습니다. 시계열 입문자라면 이 책이 좋은 길잡이가 될 수 있으리라 생각합니다.

김정민(GS ITM 기술전략팀 부장)
이 책은 데이터를 준비하는 과정부터 데이터 탐색, 데이터 가공, 머신러닝과 딥러닝을 이용한 모델 개발의 전반적인 과정을 소개합니다. 또한 의료, 금융, 정부 사례와 함께 시계열 분석 및 예측을 적용하는 데 필요한 아이디어도 제공합니다. 시계열 분석 및 예측을 수행하는 모든 비즈니스 의사결정자나 분석가에게 훌륭한 안내서가 되리라 확신합니다.

문선홍(GS ITM 기술전략팀 부장)
시계열 예측을 구현하는 것은 어렵지 않으나, 높은 정확도로 좋은 예측 결과를 내는 것은 매우 어렵습니다. 아무리 훌륭하고 복잡한 알고리즘으로 구현하더라도 예측이 정확하지 않다면 쓸모없는 작업이 됩니다. 이 책에서는 정확한 미래 예측을 위한 데이터 가공 방법부터 다양한 예측 모델링 개발 및 적용 방법까지 체계적으로 설명합니다.

정용우(GS ITM 기술전략팀 부장)
파이썬과 R 두 가지 언어로 시계열 데이터를 설명합니다. 특히 딥러닝의 경우 MXNet으로 처리한 과정을 눈여겨볼 필요가 있습니다. 기본적인 이론은 물론, 데이터 전처리부터 일반적인 시계열, 헬스케어, 주식시장 데이터까지 다룹니다. 시계열 데이터를 집중적으로 공부하고자 하는 독자에게 좋은 참고 자료가 될 것입니다.

목차

CHAPTER 1 시계열의 개요와 역사
1.1 다양한 응용 분야의 시계열 역사
1.2 시계열 분석의 도약
1.3 통계적 시계열 분석의 기원
1.4 머신러닝 시계열 분석의 기원
1.5 보충 자료

CHAPTER 2 시계열 데이터의 발견 및 다루기
2.1 시계열 데이터는 어디서 찾는가
2.2 테이블 집합에서 시계열 데이터 집합 개선하기
2.3 타임스탬프의 문제점
2.4 데이터 정리
2.5 계절성 데이터
2.6 시간대
2.7 사전관찰의 방지
2.8 보충 자료

CHAPTER 3 시계열의 탐색적 자료 분석
3.1 친숙한 방법
3.2 시계열에 특화된 탐색법
3.3 유용한 시각화
3.4 보충 자료

CHAPTER 4 시계열 데이터의 시뮬레이션
4.1 시계열 시뮬레이션의 특별한 점
4.2 코드로 보는 시뮬레이션
4.3 시뮬레이션에 대한 마지막 조언
4.4 보충 자료

CHAPTER 5 시간 데이터 저장
5.1 요구 사항 정의
5.2 데이터베이스 솔루션
5.3 파일 솔루션
5.4 보충 자료

CHAPTER 6 시계열의 통계 모델
6.1 선형회귀를 사용하지 않는 이유
6.2 시계열을 위해 개발된 통계 모델
6.3 시계열 통계 모델의 장단점
6.4 보충 자료

CHAPTER 7 시계열의 상태공간 모델
7.1 상태공간 모델의 장단점
7.2 칼만 필터
7.3 은닉 마르코프 모델
7.4 베이즈 구조적 시계열
7.5 보충 자료

CHAPTER 8 시계열 특징의 생성 및 선택
8.1 입문자를 위한 예제
8.2 특징 계산 시 고려 사항
8.3 특징의 발견에 영감을 주는 장소 목록
8.4 생성된 특징들 중 일부만 선택하는 방법
8.5 마치며
8.6 보충 자료

CHAPTER 9 시계열을 위한 머신러닝
9.1 시계열 분류
9.2 클러스터링
9.3 보충 자료

CHAPTER 10 시계열을 위한 딥러닝
10.1 딥러닝 개념
10.2 신경망 프로그래밍
10.3 학습 파이프라인 만들기
10.4 순전파 네트워크
10.5 합성곱 신경망
10.6 순환 신경망
10.7 복합 구조
10.8 마치며
10.9 보충 자료

CHAPTER 11 오차 측정
11.1 예측을 테스트하는 기본 방법
11.2 예측하기 좋은 시점
11.3 시뮬레이션으로 모델의 불확실성 추정
11.4 여러 단계를 앞선 예측
11.5 모델 검증 시 주의 사항
11.6 보충 자료

CHAPTER 12 시계열 모델의 학습과 배포에 대한 성능 고려 사항
12.1 일반 사례를 위해 만들어진 도구로 작업하기
12.2 데이터 스토리지 형식의 장단점
12.3 성능 고려 사항에 맞게 분석 수정
12.4 보충 자료

CHAPTER 13 헬스케어 애플리케이션
13.1 독감 예측
13.2 혈당치 예측
13.3 보충 자료

CHAPTER 14 금융 애플리케이션
14.1 금융 데이터의 취득과 탐색
14.2 딥러닝을 위한 금융 데이터 전처리
14.3 RNN의 구축과 학습
14.4 보충 자료

CHAPTER 15 정부를 위한 시계열
15.1 정부 데이터 취득
15.2 대규모 시계열 데이터의 탐색
15.3 시계열 데이터에 대한 실시간 통계 분석
15.4 보충 자료

CHAPTER 16 시계열 패키지
16.1 대규모 예측
16.2 이상 감지
16.3 그 밖의 시계열 패키지
16.4 보충 자료

CHAPTER 17 시계열 예측의 미래 전망
17.1 서비스형 예측
17.2 딥러닝으로 확률적 가능성 향상
17.3 통계적 방법보다 중요성이 더 커진 머신러닝 방법
17.4 머신러닝과 통계를 결합한 방법론의 증가
17.5 일상으로 스며든 더 많은 예측

저자소개

에일린 닐슨 [저] 신작알림 SMS신청
생년월일 -

뉴욕을 중심으로 활동하는 소프트웨어 엔지니어이자 데이터 분석가. 헬스케어 스타트업, 정치 캠페인, 물리 연구 실험, 금융거래 등 다양한 분야에서 시계열을 포함한 여러 데이터를 다뤘다. 현재는 예측 애플리케이션을 위한 신경망을 개발 중이다.

박찬성 [역] 신작알림 SMS신청
생년월일 -

인제대학교와 워싱턴 주립 대학교에서 컴퓨터공학을 전공했으며 현재는 한국전자통신연구원에서 컴퓨터 네트워크 분야를 연구 및 개발하고 있다. ML GDE(Google Developers Expert for Machine Learning)이자 TensorFlow KR 및 fast.ai KR 커뮤니티 운영자이며, 관련 분야의 번역자로도 활동한다. 『나만의 스마트워크 환경 만들기』(비제이퍼블릭, 2020)를 집필했다. 프로그래밍과 다양한 언어에 관심이 많으며 프로젝트를 진행하며 C/C++, 자바, 파이썬, Go 언어를 사용해왔다.

컴퓨터/인터넷 분야에서 많은 회원이 구매한 책

    리뷰

    10.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    10.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용