간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (21,380원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (15,750원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (18,000원)
(최대할인 4만원 / 2만원 이상 결제)
Close

리얼월드 머신러닝 : 생생한 현장의 실무 예제로 배우는

원제 : Real-World Machine Learning
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 192
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

25,000원

  • 22,500 (10%할인)

    1,250P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
주문수량
감소 증가

* 배송예정일이 오늘이나 내일인 경우 1) 당일/하루배송 보장! 2) 배송 지연 시 I-Point 2,000P또는 4,000원 도서상품권 지급 &n 더보기

  • 이벤트/기획전

  • 연관도서(46)

  • 상품권

AD

책소개

머신러닝 시스템은 데이터에서 일반적인 방법으로 발견하지 못할 귀중한 통찰력과 유형을 찾을 수 있도록 도와준다. 《리얼월드 머신러닝》에서 보여주는 머신러닝 기법은 트렌드를 파악하고 행동을 예측하며 사실에 근거해서 추천하는 방법을 알려준다. 이 책은 실무 개발자에게 머신러닝 프로젝트 실행 기술을 가르치고자 고안된 실용 가이드다. 학문적 이론과 복잡한 수학을 깊이 들어가지 않고도 효과적인 머신러닝 시스템을 성공적으로 구축 및 배치하려고 준비하는 독자를 위해 생생한 현장의 머신러닝 사례와 함께 소개한다.

출판사 서평

《리얼월드 머신러닝》은 추상적 이론과 복잡한 수학을 과용하지 않고 성공적인 머신러닝 실무자가 되는 데 필요한 개념과 기술을 가르쳐 준다. 관련 예제를 파이썬으로 바로 실습함으로써 데이터 수집, 모델링, 분류 및 회귀 기술을 익힐 수 있으며, 모델 유효성 검사, 최적화, 확장성 및 실시간 스트리밍과 같은 가장 중요한 작업들도 탐구한다. 위 과정을 마치고 나면 여러분의 강력한 머신러닝 시스템을 스스로 구축하고 배포하고 유지할 수 있을 것이다.

1부에서는 머신러닝의 기본적인 개념을 설명하고 2부에서는 라이브러리를 활용해 머신러닝 모델을 만드는 전체 과정을 보여준다. 일반적인 데이터, 텍스트 데이터, 빅데이터와 관련된 3개의 예제를 통해 자세하고 다양하게 배울 수 있으며, 또한 이 과정에서 발생하는 어려움을 해결하는 방법을 알 수 있다. 책에서 얻은 간접 경험이 실제로 머신러닝을 사용하는 일에 많은 도움이 될 것이다.

★ 이 책에서 다루는 내용 ★
◎ 미래 행동 예측하기
◎ 성능 평가와 최적화
◎ 특성 추출
◎ 고급 자연어 처리
◎ 영화 감상평 분석 및 추천

목차

[01부] 머신러닝 작업흐름
▣ 01장: 머신러닝이란 무엇인가?
1.1 기계가 학습하는 방법
1.2. 데이터에 근거한 결정
__1.2.1. 전통적 접근법
__1.2.2. 머신러닝 접근법
__1.2.3. 머신러닝의 다섯 가지 이점
__1.2.4. 문제점
1.3. 머신러닝 작업흐름 따라가기: 데이터에서 배포까지
__1.3.1. 데이터 수집 및 준비
__1.3.2. 데이터로 모델 가르치기
__1.3.3. 모델 성능 평가
__1.3.4. 모델 성능 최적화
1.4. 고급 기법으로 모델 성능을 높이기
__1.4.1. 데이터 전처리 및 특성 공학
__1.4.2. 온라인 방식으로 모델을 지속해서 개선
__1.4.3. 모델의 데이터 크기와 속도 확장
1.5. 요약
1.6. 이번 장에 나오는 용어

▣ 02장: 실무현장 데이터
2.1. 시작하기: 데이터 수집
__2.1.1. 어떤 특성을 포함해야 하는가?
__2.1.2. 목표 변수에 대한 실측 자료를 어떻게 얻을 수 있는가?
__2.1.3. 얼마나 많은 훈련 데이터가 필요한가?
__2.1.4. 훈련 집합이 충분히 대표성을 띄는가?
2.2. 모델링을 위한 데이터 전처리
__2.2.1. 범주형 특성
__2.2.2. 결측 자료 다루기
__2.2.3. 간단한 특성 추출
__2.2.4. 데이터 정규화
2.3. 데이터 시각화 사용
__2.3.1. 모자이크 분포도
__2.3.2. 상자 분포도
__2.3.3. 밀도 분포도
__2.3.4. 산점도
2.4. 요약
2.5. 이번 장에 나온 용어

▣ 03장: 모델링과 예측
3.1. 머신러닝 모델링의 기본
3.1.1. 입력과 목표 간의 관계 찾기
__3.1.2. 좋은 모델을 찾는 목적
__3.1.3. 모델링 방법의 종류
__3.1.4. 지도 학습 대 비지도 학습
3.2. 분류: 버킷으로 예측하기
__3.2.1. 분류기를 만들고 예측하기
__3.2.2. 복잡한 비선형 데이터 분류
__3.2.3. 여러 계급으로 분류하기
3.3. 회귀: 수치 예측
__3.3.1. 회귀기 구축 및 예측
__3.3.2. 복잡한 비선형 데이터에 대한 회귀 수행
3.4. 요약
3.5. 이번 장에 나온 용어

▣ 04장: 모델 평가와 최적화
4.1. 모델 일반화: 신규 데이터에 대한 예측 정확도 평가
__4.1.1. 문제: 과적합과 모델 낙천주의
__4.1.2. 해결책: 교차 검증
__4.1.3. 교차 검증 시 주의사항
4.2. 분류 모델 평가
__4.2.1. 계급 단위 정확도와 혼동 행렬
__4.2.2. 정확도 절충과 ROC 곡선
4.2.3. 다중 계급 분류
4.3. 회귀 모델 평가
__4.3.1. 간단한 회귀 성능 측정 사용
__4.3.2. 잔차 검사
4.4. 매개변수 튜닝을 통한 모델 최적화
__4.4.1. 머신러닝 알고리즘과 조율 매개변수
__4.4.2. 그리드 탐색
4.5. 요약
4.6. 이번 장에 나온 용어

▣ 05장: 특성 추출의 기본
5.1. 동기: 특성 공학이 유용한 이유는?
__5.1.1. 특성 추출이란 무엇인가?
__5.1.2. 특성 추출을 해야 하는 다섯 가지 이유
__5.1.3. 특성 추출과 특정 분야 전문 지식
5.2. 기본적인 특성 추출 과정
__5.2.1. 예제: 행사 추천
__5.2.2. 날짜 및 시간 특성 다루기
__5.2.3. 간단한 텍스트 특성으로 작업하기
5.3. 특성 선택
__5.3.1. 전진 선택과 후진 제거
__5.3.2. 데이터 탐색을 위한 특성 선택
__5.3.3. 현업 특성 선택 예제
5.4. 요약
5.5. 이번 장에 나온 용어

[02부] 실제 적용
▣ 06장: 예제: 뉴욕 시 택시 데이터
6.1. 데이터: 뉴욕 시 택시 운행 정보와 요금 정보
__6.1.1. 데이터 시각화
__6.1.2. 문제 정의 및 데이터 준비
6.2. 모델링
__6.2.1. 기본적인 선형 모델
__6.2.2. 비선형 분류기
__6.2.3. 범주형 특성 포함하기
__6.2.4. 날짜 및 시간 특성 포함
__6.2.5. 모델 통찰
6.3. 요약
6.4. 이번 장에 나오는 용어

▣ 07장: 고급 특성 추출 기법
7.1. 고급 텍스트 특성
__7.1.1. 단어 주머니 모델
__7.1.2. 주제 모델링
__7.1.3. 내용 확장
7.2. 이미지 특성
__7.2.1. 간단한 이미지 특성
__7.2.2. 물체와 형태 추출
7.3. 시계열 특성
__7.3.1. 시계열 데이터의 유형
__7.3.2. 시계열 데이터를 바탕으로 한 예측
__7.3.3. 고전적 시계열 특성
7.3.4. 사건 흐름에 대한 특성 추출
7.4. 요약
7.5. 이번 장에 나온 용어

▣ 08장: 고급 자연 언어 처리 예제: 영화 감상평 평점
8.1. 데이터 및 사용사례 탐구
__8.1.1. 데이터셋 훑어보기
__8.1.2. 데이터셋 조사
__8.1.3. 사용사례란 무엇인가?
8.2. 기초 자연 언어 처리 특성 추출 및 초기 모델 구축
__8.2.1. 단어 주머니 특성
__8.2.2. 나이브 베이즈 알고리즘으로 모델 구축하기
__8.2.3. tf-idf 알고리즘으로 단어 주머니의 특성들을 정규화하기
__8.2.4. 모델 매개변수 최적화
8.3. 고급 알고리즘과 모델 배치 고려사항
__8.3.1. Word2vec 특성
__8.3.2. 랜덤 포레스트 모델
8.4. 요약
8.5. 이번 장에 나온 용어

▣ 09장: 머신러닝 작업 흐름 확장
9.1. 확장하기 전에
__9.1.1. 중요 차원 식별
__9.1.2. 확장하는 대신 훈련 데이터를 부차 표집하기?
__9.1.3. 확장 가능한 데이터 관리 시스템
9.2. 머신러닝 모델링 파이프라인 확장
__9.2.1. 학습 알고리즘 확장
9.3. 예측 확장
__9.3.1. 예측량 높이기
__9.3.2. 예측 속도 높이기
9.4. 요약
9.5. 이번 장의 용어

▣ 10장: 예제: 디지털 디스플레이 광고
10.1. 디스플레이 광고
10.2. 디지털 광고 데이터
10.3. 특성 추출과 모델링 전략
10.4. 데이터의 크기와 모양
10.5. 특잇값 분해
10.6. 자원 추정 및 최적화
10.7. 모델링
10.8. k 최근접 이웃
10.9. 랜덤 포레스트
10.10. 기타 현업 고려사항
10.11. 요약
10.12. 이번 장에 나온 용어
10.13. 요점 및 결론

▣ 부록: 인기 있는 머신러닝 알고리즘

관련이미지

저자소개

조셉 W. 리처드, 마크 페더롤 [저] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

정종현, 유선우 [역] 신작알림 SMS신청 작가DB보기
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 48권 / 현재구매 가능도서 47권)

선택한 상품 북카트담기
펼쳐보기

(총 19권 / 현재구매 가능도서 19권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

    리뷰쓰기

    기대평

    작성시 유의사항

    평점
    0/200자
    등록하기

    기대평

    0.0

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    판매자

    (주)교보문고

    상호

    (주)교보문고

    사업자 종류

    법인사업자

    사업자번호

    102-81-11670

    연락처

    1544-1900

    이메일

    callcenter@kyobobook.co.kr

    통신판매 신고 번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용