간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (37,050원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (27,300원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (31,200원)
(최대할인 4만원 / 2만원 이상 결제)
Close

비즈니스 애널리틱스를 위한 데이터 마이닝(IT@CookBook)

원제 : Data Mining for Business Analytics
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 77
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

39,000원

  • 39,000

할인혜택
적립혜택
  • S-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 9/25(월) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(117)

  • 상품권

AD

책소개

데이터 마이닝의 개념, 기법, 응용

다양한 분석 기법이 존재하는 이유는 각 분석 기법마다 장단점이 있기 때문이다. 데이터를 분석하는 목적, 데이터의 양·유형·노이즈 등에 따라 적합한 분석 기법이 달라진다. 이 책은 전통적인 통계 기법부터 머신러닝 기법까지 데이터 마이닝 기술 전반을 다루어, 주어진 상황에 적합한 분석 기법을 선택할 수 있는 힘을 키워준다. 또한 풍부한 연습문제와 9개의 실전 사례를 통해 실전 감각도 기를 수 있다.
※ 본 도서는 대학 강의용 교재로 개발되었으므로 연습문제 해답은 제공하지 않습니다.

출판사 서평

관련 도서
『IT CookBook, 데이터 과학을 위한 파이썬 머신러닝』(한빛아카데미, 2022)
『비즈니스 애널리틱스』(한빛아카데미, 2021)
『기계 학습』(한빛아카데미, 2017)

목차

PART 01 준비
Chapter 01 서문
1.1 비즈니스 애널리틱스 정의
1.2 데이터 마이닝 정의
1.3 데이터 마이닝 관련 용어
1.4 빅데이터
1.5 데이터 사이언스
1.6 다양한 분석 방법이 존재하는 이유
1.7 용어와 표기법
1.8 로드맵

Chapter 02 데이터 마이닝 프로세스 개요
2.1 서론
2.2 데이터 마이닝의 핵심 아이디어
2.3 데이터 마이닝 수행 단계
2.4 데이터 분석 사전 단계
2.5 예측력과 과적합
2.6 모델 구축: 선형 회귀 분석을 이용한 예제
2.7 로컬 컴퓨터에서 파이썬을 이용한 데이터 마이닝
2.8 데이터 마이닝 과정의 자동화
2.9 데이터 마이닝의 윤리 이슈
연습문제

PART 02 데이터 탐색과 차원 축소
Chapter 03 데이터 시각화
3.1 개요
3.2 예제 데이터
3.3 기본 차트: 막대그래프, 선그래프, 산점도
3.4 다차원 시각화
3.5 특수 시각화
3.6 주요 시각화 작업 요약
연습문제

Chapter 04 차원 축소
4.1 서론
4.2 차원의 저주
4.3 실질적인 고려 사항
4.4 데이터 요약
4.5 상관 분석
4.6 범주형 변수의 범주 개수 축소
4.7 범주형 변수에서 수치형 변수로의 변환
4.8 주성분 분석
4.9 회귀 모델을 사용한 차원 축소
4.10 분류 트리와 회귀 트리를 이용한 차원 축소
연습문제

PART 03 성능 평가
Chapter 05 예측 성능 평가
5.1 서론
5.2 예측 성능의 평가
5.3 분류기 성능의 판단
5.4 랭킹 성능의 판단
5.5 오버샘플링
연습문제

PART 04 예측 및 분류
Chapter 06 다중 선형 회귀
6.1 서론
6.2 설명 모델과 예측 모델의 모델링
6.3 회귀식의 추정과 예측
6.4 선형 회귀 분석의 변수 선택
연습문제

Chapter 07 k-NN 알고리즘
7.1 k-NN 분류기(범주형 결과)
7.2 k-NN 예측기(수치형 결과)
7.3 k-NN 알고리즘의 장점과 단점
연습문제

Chapter 08 나이브 베이즈 분류기
8.1 서론
8.2 완전한(정확한) 베이지안 분류기의 적용
8.3 나이브 베이즈 분류기의 장점과 단점
연습문제

Chapter 09 분류 회귀 트리
9.1 서론
9.2 분류 트리
9.3 분류 트리의 성능 평가
9.4 과적합 방지하기
9.5 분류 트리 모델의 분류 규칙
9.6 3개 이상의 클래스 분류하기
9.7 회귀 트리 모델
9.8 예측력 향상: 랜덤 포레스트와 부스트 트리
9.9 트리 모델의 장점과 단점
연습문제

Chapter 10 로지스틱 회귀 분석
10.1 서론
10.2 로지스틱 회귀 모델
10.3 예제: 개인 대출 신청 수락
10.4 분류 성능 평가
10.5 다중 클래스 분류에 대한 로지스틱 회귀
10.6 분석 예제: 연착 항공편 예측
연습문제

Chapter 11 신경망
11.1 서론
11.2 신경망의 개념과 구조
11.3 데이터에 신경망 적합하기
11.4 요구되는 사용자 입력
11.5 예측 변수들과 결과 변수 간의 관계 탐색
11.6 딥러닝
11.7 신경망의 장점과 단점
연습문제

Chapter 12 판별 분석
12.1 서론
12.2 클래스로부터 관측치에 이르는 거리
12.3 피셔의 선형 분류 함수
12.4 판별 분석의 분류 성능
12.5 사전 확률
12.6 서로 다른 오분류 비용
12.7 클래스가 3개 이상일 경우의 분류
12.8 판별 분석의 장점과 단점
연습문제

Chapter 13 방법론 결합: 앙상블과 업리프트 모델링
13.1 앙상블
13.2 업리프트 모델링
13.3 요약
연습문제

PART 05 레코드 간의 마이닝 관계
Chapter 14 연관 규칙과 협업 필터링
14.1 연관 규칙
14.2 협업 필터링
14.3 요약
연습문제

Chapter 15 군집 분석
15.1 서론
15.2 두 레코드 사이의 거리 측정
15.3 두 군집 사이의 거리 측정
15.4 계층적 응집 군집화
15.5 비계층적 군집화: k -평균 군집화 방법
연습문제

PART 06 시계열 예측
Chapter 16 시계열 데이터 분석
16.1 서론
16.2 탐색 모델 vs. 예측 모델
16.3 비즈니스에서 주로 사용되는 예측 기법
16.4 시계열 요소
16.5 데이터 분할 및 성능 평가
연습문제

Chapter 17 회귀 분석을 기반으로 한 예측
17.1 추세를 반영한 모델
17.2 계절성을 반영한 모델
17.3 추세와 계절성을 반영한 모델
17.4 자기상관과 아리마 모델
연습문제

Chapter 18 평활법
18.1 서론
18.2 이동 평균법
18.3 단순 지수 평활법
18.4 고급 지수 평활법
연습문제

PART 07 데이터 분석
Chapter 19 소셜 네트워크 애널리틱스
19.1 서론
19.2 방향/무방향 네트워크
19.3 네트워크 분석과 시각화
19.4 소셜 데이터의 측정 측도와 분류
19.5 네트워크 측도를 이용한 예측과 분류
19.6 파이썬을 이용한 소셜 네트워크 데이터 수집
19.7 소셜 네트워크 애널리틱스의 장점과 단점
연습문제

Chapter 20 텍스트 마이닝
20.1 서론
20.2 텍스트의 표 형식: 용어-문서 행렬과 ‘단어 주머니’
20.3 단어 주머니 vs. 문서 수준의 의미 추출
20.4 텍스트의 전처리
20.5 데이터 마이닝 방법의 구현
20.6 예제: 자동차와 전자 제품에 대한 온라인 논의
20.7 요약
연습문제

PART 08 사례
Chapter 21 사례
21.1 찰스 북클럽
21.2 독일 신용 평가 자료
21.3 테이코 소프트웨어 카탈로그 판매 회사
21.4 유권자
21.5 택시 예약 취소
21.6 목욕 비누 구매자 세분화
21.7 직접 우편 기금 조성
21.8 카탈로그 교차 판매
21.9 시계열 사례: 대중교통 수요 예측
이 책에 사용된 데이터 파일 목록
부록: 파이썬 유틸리티 함수
참고문헌
찾아보기

관련이미지

저자소개

갈리트 슈무엘리 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

Peter C. Bruce [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

Gedeck, Peter [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

이 상품의 시리즈

(총 123권 / 현재구매 가능도서 118권)

선택한 상품 북카트담기
펼쳐보기

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    0.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용