간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (23,090원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (17,010원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (19,440원)
(최대할인 4만원 / 2만원 이상 결제)
Close

그림으로 배우는 StatQuest 머신러닝 강의 : 머리에 쏙쏙 들어오는 머신러닝 그림책[초판]

원제 : The StatQuest Illustrated Guide To Machine Learning
소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 24
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

27,000원

  • 24,300 (10%할인)

    1,350P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 3/31(금) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가

책소개

지금까지 이보다 더 시각적이고 직관적인 머신러닝 강의는 없었다

머신러닝은 놀랍고 강력한 만큼 매우 복잡한 분야다. 이 책에서는 복잡한 머신러닝 알고리즘을을 이해하기 쉽도록 작게 쪼개 직관적인 예시와 그림으로 보여준다. 개념을 글로 요약하는 대신 혁신적인 StatQuest 방식으로 설명해, 머신러닝이 무엇이고 머신러닝의 목표가 무엇인지 쉽게 이해할 수 있다. 한 페이지에 한 장의 그림으로 설명하는 시각적 학습법으로 머신러닝의 기초를 다져보자.

출판사 서평

요약된 글보다 쉽게 머신러닝을 이해하는 혁신적인 방식

처음 접하는 머신러닝의 개념과 용어를 확실히 이해하고 싶다. 하지만 보기만 해도 머리 아프고 두꺼운 머신러닝 책은 선뜻 손이 가지 않는다. 이제 그러한 책들은 나중으로 미뤄두자. 이 책에서 재미있는 예시를 포함한 그림을 따라가다 보면 쉬우면서도 확실하게 머신러닝 기본기를 다질 수 있으니 말이다.

머신러닝 입문서로서 과연 이만한 책이 있을까. 머신러닝은 1도 모르는 사람도 내용에 빠져들어 읽다 보면 금세 이해하게 될 것이다. 저자의 유머와 명쾌한 해답, 이해를 도와주는 노말사우르스와 스탯스콰치가 아주 기초적인 내용부터 신경망 같은 고급 주제까지 이끌어준다.

이 책의 저자 조시 스타머는 개념을 글로 요약하는 대신 혁신적인 StatQuest 방식을 만들어 전 세계 사람들이 데이터 과학 대회에서 우승하고, 시험을 통과하고, 학교를 졸업하고, 직업을 얻고 승진하는 데 도움을 주고 있다. 독자 여러분도 그중 한 명이 되기를 간절히 바란다. 베타리더의 한마디를 인용해 서평을 마무리하겠다. “앞으로 이 책을 모르는 사람이 없었으면 좋겠다.”

주요 내용
■ 머신러닝 기초 개념!!!
■ 교차검증!!!
■ 통계 기초 개념!!!
■ 선형회귀!!!
■ 경사 하강법!!!
■ 로지스틱 회귀!!!
■ 나이브 베이즈!!!
■ 모델 성능 평가하기!!!
■ 정규화로 과적합 방지하기!!!
■ 의사결정 트리!!!
■ 서포트 벡터 분류기와 서포트 벡터 머신!!!
■ 신경망!!!

목차

지은이·옮긴이 소개 3
옮긴이 머리말 4
베타리더 후기 5
이 책을 읽는 방법 9

CHAPTER 1 머신러닝 기초 개념!!! 10
CHAPTER 2 교차검증!!! 23
CHAPTER 3 통계 기초 개념!!! 32
CHAPTER 4 선형회귀!!! 77
CHAPTER 5 경사 하강법!!! 85
CHAPTER 6 로지스틱 회귀!!! 110
CHAPTER 7 나이브 베이즈!!! 122
CHAPTER 8 모델 성능 평가하기!!! 138
CHAPTER 9 정규화로 과적합 방지하기!!! 166
CHAPTER 10 의사결정 트리!!! 185
CHAPTER 11 서포트 벡터 분류기와 서포트 벡터 머신(SVM)!!! 220
CHAPTER 12 신경망!!! 236
부록(학교에서 배웠겠지만 아마도 지금은 잊어버렸을 내용)!!! 273

감사의 말 304
찾아보기 306

본문중에서

문제: 뒤에서 배울 내용이지만 머신러닝에는 분류 혹은 정량 예측을 하기 위한 다양한 방법이 존재합니다. 그렇다면 어떤 방법을 사용할지 어떻게 선택할 수 있을까요? 예를 들어, 이 검은색 직선을 사용해 몸무게로 키를 예측한다고 가정해봅시다. 혹은 이 구불구불한 초록색 곡선으로 몸무게를 기반으로 키를 예측한다고 해봅시다. 검은색 직선과 구불구불한 초록색 곡선 중 어떤 것을 사용해야 할까요? 해답: 머신러닝에서 어떤 방법을 사용할지를 결정한다는 것의 의미는 일반적으로 해당 방법을 시도해보고 성능을 확인한다는 뜻입니다. 예를 들어 이 사람의 몸무게가 이 정도라면… 검은색 직선은 이 사람의 키가 이 정도라고 예측할 것입니다. 이와 반대로, 구불구불한 초록색 곡선은 이 사람의 키가 조금 더 클 것이라 예측하네요. (14쪽)

딥러닝 합성곱 신경망처럼 멋있어 보이는 머신러닝 방법은 매우 많습니다. 그리고 매년 새롭고 흥미로운 방법들이 많이 쏟아지고 있습니다. 하지만 어떤 방법을 사용하든 가장 중요한 점은 테스트 데이터에서 좋은 성능을 내야 한다는 점입니다. BAM!!! 이제 머신러닝에 대한 주요 개념을 몇 가지 살펴보았으니 멋져 보이는 머신러닝 용어 몇 가지를 알아봅시다. 잘 기억해두면 여러분이 댄스 파티에 참석했을 때 똑똑해 보일 수 있을 거예요. (19쪽)

앞에서 우리는 이항분포가 3명 중 2명이 호박 파이를 선호할 확률처럼 일련의 이진 결과(binary outcome) 확률을 어떻게 계산하는지 살펴봤습니다. 하지만 다양한 상황에서 사용하는 여러 이산확률분포(discrete probability distribution)가 더 존재합니다. 예를 들어 여러분이 평균적으로 한 시간 동안 이 책을 10페이지 읽을 수 있다고 하면, 푸아송 분포(Poisson distribution)를 사용해 다음 한 시간 동안 8페이지를 읽을 확률을 계산할 수 있습니다. (48쪽)

ROC는 수신자 조작 특성(receiver operating characteristic)의 약자입니다. 이 이름은 세계 2차 대전 중 수신된 레이더 신호에서 전투기 신호를 정확하게게 찾기 위해 요약한 그래프에서 유래되었습니다. ROC 그래프는 좋은 분류 임곗값을 찾고자 할 때 큰 도움을 줍니다. ROC 그래프는 참 양성 비율(true positive rate)과 거짓 양성 비율(false positive rate) 관점에서 각 임곗값이 얼마나 좋은 성능을 내는지 한 번에 요약해주기 때문입니다. (154쪽)

로지스틱 회귀와 나이브 베이즈 두 모델을 만들어 동일한 데이터로 테스트를 한다고 가정해봅시다. 우리는 어떤 모델의 성능이 더 좋은지 알고 싶습니다. 이론적으로 우리는 각 모델의 ROC 그래프를 비교해볼 수 있을 것입니다. 만약 우리가 비교할 모델이 두 개뿐이라면 이 방법은 아마도 좋은 옵션이 될 수 있겠죠. (160쪽)

문제: 선형회귀처럼 신경망에도 데이터에 구불구불한 곡선이나 구부러진 모양의 선을 피팅하기 위해 최적화해야 하는 파라미터가 존재합니다. 이 파라미터들의 최적값을 찾으려면 어떻게 해야 할까요? 해답: 선형회귀처럼 우리는 최적의 파라미터 값을 찾기 위해 경사 하강법 혹은 확률적 경사 하강법을 사용할 수 있습니다. 하지만 우리는 경사 하강법이라 부르지 않겠습니다. 그러면 너무 쉬울 겁니다. 우리는 이를 신경망에서 각 파라미터들의 미분값을 찾는 (뒤에서 앞으로 가는) 방법에서 유래한 역전파라 부르겠습니다. BAM!!! (255쪽)

관련이미지

저자소개

조시 스타머 [저] 신작알림 SMS신청
생년월일 -

세상에서 가장 인기 있는 머신러닝 유튜브 채널 ‘StatQuest with Josh Starmer’를 운영 중이다. 2016년부터 통계, 데이터 과학, 머신러닝 개념, 알고리즘을 사람들이 이해하고 기억하기 쉽도록 독특한 시각적 그림을 통해 설명하는 StatQuest는 전 세계의 사람들이 데이터 과학 대회에서 우승하고, 시험을 통과하고, 학교를 졸업하고, 직업을 얻고 승진하는 데 도움을 주고 있다.

김태헌 [역] 신작알림 SMS신청
생년월일 -

저자 김태헌은 하나금융융합기술원에서 데이터 과학자로 일하면서 로보어드바이저, 신용평가 시스템 개발 등의 프로젝트에 참여하고 있다. 중학생 시절부터 10여년간을 중국에서 보냈으며, 베이징 대학교를 졸업하고 미국 캘리포니아 대학교 샌디에이고 캠퍼스에서 국제경제 석사 학위를 받았다.

이 상품의 시리즈

전공도서/대학교재 분야에서 많은 회원이 구매한 책

    리뷰

    0.0 (총 0건)

    100자평

    작성시 유의사항

    평점
    0/100자
    등록하기

    100자평

    0.0
    (총 0건)

    판매자정보

    • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

    상호

    (주)교보문고

    대표자명

    안병현

    사업자등록번호

    102-81-11670

    연락처

    1544-1900

    전자우편주소

    callcenter@kyobobook.co.kr

    통신판매업신고번호

    01-0653

    영업소재지

    서울특별시 종로구 종로 1(종로1가,교보빌딩)

    교환/환불

    반품/교환 방법

    ‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

    반품/교환가능 기간

    변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
    단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

    반품/교환 비용

    변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
    상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

    반품/교환 불가 사유

    ·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
    (단지 확인을 위한 포장 훼손은 제외)

    ·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
    예) 화장품, 식품, 가전제품(악세서리 포함) 등

    ·복제가 가능한 상품 등의 포장을 훼손한 경우
    예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

    ·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

    ·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

    상품 품절

    공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

    소비자 피해보상
    환불지연에 따른 배상

    ·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

    ·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

    (주) 인터파크커머스 안전결제시스템 (에스크로) 안내

    (주)인터파크커머스의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
    결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

    배송안내

    • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

    • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

    • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

    • 배송비는 업체 배송비 정책에 따릅니다.

    • - 도서 구매 시 15,000원 이상 무료배송, 15,000원 미만 2,500원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용