¿Ü±¹µµ¼
ÄÄÇ»ÅÍ
ÀÎÅͳÝ/À¥ °³¹ß
2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.
Á¤°¡ |
130,000¿ø |
---|
130,000¿ø
3,900P (3%Àû¸³)
ÇÒÀÎÇýÅÃ | |
---|---|
Àû¸³ÇýÅà |
|
|
|
Ãß°¡ÇýÅÃ |
|
À̺¥Æ®/±âȹÀü
¿¬°üµµ¼
»óǰ±Ç
ÀÌ»óǰÀÇ ºÐ·ù
¸ñÂ÷
1 An Introduction to Text Analytics.
2 Text Preparation and Similarity Computation.
3 Matrix Factorization and Topic Modeling.
4 Text Clustering.
5 Text Classification: Basic Models.
6 Linear Models for Classification and Regression.
7 Classifier Performance and Evaluation.
8 Joint Text Mining with Heterogeneous Data.
9 Information Retrieval and Search Engines.
10 Language Modeling and Deep Learning.
11 Attention Mechanisms and Transformers.
12 Text Summarization.
13 Information Extraction and Knowledge Graphs.
14 Question Answering.
15 Opinion Mining and Sentiment Analysis.
16 Text Segmentation and Event Detection.
Index
ÀúÀÚ¼Ò°³
»ý³â¿ùÀÏ | - |
---|
´º¿å ¿äũŸ¿î ÇÏÀÌÃ÷ÀÇ IBM T. J. ¿Ó½¼ ¸®¼Ä¡ ¼¾ÅÍÀÇ ¶Ù¾î³ ¿¬±¸ ȸ¿ø(DRSM)ÀÌ´Ù. 1993³â¿¡ IIT Kanpur¿¡¼ Çлç ÇÐÀ§¸¦ ¹Þ¾Ò°í, 1996³â¿¡ MIT¿¡¼ ¹Ú»ç ÇÐÀ§¸¦ ¹Þ¾Ò´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´× ºÐ¾ß¿¡¼ Æø³Ð°Ô ÀÏÇØ¿Ô°í, 400°³ ÀÌ»óÀÇ ³í¹®À» ÄÜÆÛ·±½º¿Í ÇмúÁö¿¡ ¹ßÇ¥ÇßÀ¸¸ç 80°³ ÀÌ»óÀÇ Æ¯Çã±ÇÀÌ ÀÖ´Ù. µ¥ÀÌÅÍ ¸¶À̴׿¡ °üÇÑ ±³°ú¼, ƯÀÌÄ¡ ºÐ¼®¿¡ °üÇÑ Æ÷°ýÀûÀΠåÀ» Æ÷ÇÔÇÑ 15±ÇÀÇ Ã¥À» Àú¼úÇϰųª ÆíÁýÇß´Ù. ƯÇãÀÇ »ó¾÷Àû °¡Ä¡ ´öºÐ¿¡ IBM¿¡¼ ¸¶½ºÅÍ ¹ß¸í°¡·Î ¼¼ ¹øÀ̳ª ÁöÁ¤µÆ´Ù. µ¥ÀÌÅÍ ½ºÆ®¸²ÀÇ »ý¹° Å×·¯¸®½ºÆ® À§Çù ŽÁö¿¡ ´ëÇÑ ¿¬±¸·Î IBM ±â¾÷»ó(2003)À» ¼ö»ó Çß°í, ÇÁ¶óÀ̹ö½Ã ±â¼ú¿¡ ´ëÇÑ °úÇÐÀûÀÎ °øÇåÀ¸·Î IBM ¿ì¼ö Çõ½Å»ó(2008)À» ¼ö»óÇß´Ù. µ¥ÀÌÅÍ ½ºÆ®¸² ¹× °íÂ÷¿øÀûÀÎ ÀÛ¾÷¿¡ ´ëÇÑ °¢°¢ÀÇ ÀÛ¾÷À» ÀÎÁ¤¹Þ¾Æ µÎ °³ÀÇ IBM ¿ì¼ö ±â¼ú ¼º°ú»ó(2009, 2015)À» ¼ö»óÇß´Ù. ÀÀÃà ±â¹Ý ÇÁ¶óÀ̹ö½Ã º¸Á¸ µ¥ÀÌÅÍ ¸¶À̴׿¡ ´ëÇÑ ¿¬±¸·Î EDBT 2014 Test of Time Award¸¦ ¼ö»óÇß´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¸¶ÀÌ´× ºÐ¾ß¿¡¼ ¿µÇâ·Â ÀÖ´Â ¿¬±¸ °øÇå¿¡ ´ëÇÑ µÎ °¡Áö ÃÖ°í»ó Áß ÇϳªÀÎ IEEE ICDM ¿¬±¸ °øÇå»ó(2015)À» ¼ö»óÇß´Ù. IEEE ºòµ¥ÀÌÅÍ ÄÜÆÛ·±½º(2014)ÀÇ ÃѰý °øµ¿ ÀÇÀåÁ÷°ú, ACM CIKM ÄÜÆÛ·±½º(2015), IEEE ICDM ÄÜÆÛ·±½º(2015), ACM KDD ÄÜÆÛ·±½º(2016) ÇÁ·Î±×·¥ °øµ¿ ÀÇÀåÁ÷À» ¿ªÀÓÇß´Ù. 2004³âºÎÅÍ 2008³â±îÁö ¡¸IEEE Transactions on Knowledge and Data Engineering¡¹ÀÇ ºÎÆíÁýÀåÀ¸·Î ±Ù¹«Çß´Ù. ¡¸ACM Transactions on Knowledge Discovery from Data¡¹ÀÇ ºÎÆíÁýÀå, ¡¸IEEE Transactions on Big Data¡¹ÀÇ ºÎÆíÁýÀå, ¡¸Data Mining and Knowledge Discovery Journal¡¹°ú ¡¸ACM SIGKDD Exploration¡¹ÀÇ ÆíÁýÀå, ¡¸Knowledge and Information Systems Journal¡¹ÀÇ ºÎÆíÁýÀåÀÌ´Ù. SpringerÀÇ °£Ç๰ÀÎ ¡¸Lecture Notes on Social Networks¡¹ ÀÚ¹® À§¿øÈ¸¿¡¼ Ȱµ¿Çϰí ÀÖÀ¸¸ç µ¥ÀÌÅÍ ¸¶À̴׿¡ °üÇÑ SIAM Ȱµ¿ ±×·ìÀÇ ºÎ»çÀåÀ» ¿ªÀÓÇß´Ù. ¡°contributions to knowledge discovery and data mining algorithms¡±¿¡ °üÇÑ SIAM, ACM, IEEEÀÇ Æç·Î¿ì´Ù.
ÆîÃ帱âÀúÀÚÀÇ ´Ù¸¥Ã¥
Àüüº¸±âÁÖ°£·©Å·
´õº¸±â»óǰÁ¤º¸Á¦°ø°í½Ã
À̺¥Æ® ±âȹÀü
ÄÄÇ»ÅÍ ºÐ¾ß¿¡¼ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥
ÆÇ¸ÅÀÚÁ¤º¸
»óÈ£ |
(ÁÖ)±³º¸¹®°í |
---|---|
´ëÇ¥ÀÚ¸í |
¾Èº´Çö |
»ç¾÷ÀÚµî·Ï¹øÈ£ |
102-81-11670 |
¿¬¶ôó |
1544-1900 |
ÀüÀÚ¿ìÆíÁÖ¼Ò |
callcenter@kyobobook.co.kr |
Åë½ÅÆÇ¸Å¾÷½Å°í¹øÈ£ |
01-0653 |
¿µ¾÷¼ÒÀçÁö |
¼¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù) |
±³È¯/ȯºÒ
¹Ýǰ/±³È¯ ¹æ¹ý |
¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹Ýǰ/±³È¯/ȯºÒ¡¯ ¿¡¼ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼ ½Åû °¡´É |
---|---|
¹Ýǰ/±³È¯°¡´É ±â°£ |
º¯½É ¹ÝǰÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É |
¹Ýǰ/±³È¯ ºñ¿ë |
º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹Ýǰ/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã |
¹Ýǰ/±³È¯ ºÒ°¡ »çÀ¯ |
·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óǰ µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óǰ µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆÇ¸Å°¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì ·ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì |
»óǰ ǰÀý |
°ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ ǰÀý/Áö¿¬µÉ ¼ö ÀÖÀ½ |
¼ÒºñÀÚ ÇÇÇØº¸»ó |
·»óǰÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, ǰÁúº¸Áõ ¹× ÇÇÇØº¸»ó µî¿¡ °üÇÑ »çÇ×Àº¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ ÁØÇÏ¿© ó¸®µÊ ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼ÀǼҺñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ |
(ÁÖ)ÀÎÅÍÆÄũĿ¸Ó½ºÀÇ ¸ðµç »óǰÀº ÆÇ¸ÅÀÚ ¹× °áÁ¦ ¼ö´ÜÀÇ ±¸ºÐ¾øÀÌ È¸¿ø´ÔµéÀÇ ±¸¸Å¾ÈÀüÀ» À§ÇØ ¾ÈÀü°áÁ¦ ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© ¼ºñ½ºÇϰí ÀÖ½À´Ï´Ù.
°áÁ¦´ë±Ý ¿¹Ä¡¾÷ µî·Ï : 02-006-00064
¼ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ
¹è¼Û¾È³»
±³º¸¹®°í »óǰÀº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óǰÀ» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.
Ãâ°í°¡´É ½Ã°£ÀÌ ¼·Î ´Ù¸¥ »óǰÀ» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óǰÀ» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.
±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.
¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.