°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (52,250¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (38,500¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (44,000¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

Sustainable Environmental Engineering [¾çÀå]

ÇÑÁ¤ÆǸŠ¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

°øÀ¯Çϱâ
  • Àú : WALTER Z. TAMG
  • ÃâÆÇ»ç : Wiley
  • ¹ßÇà : 2021³â 02¿ù 05ÀÏ
  • Âʼö : 528
  • ISBN : 9781119028376
Á¤°¡

55,000¿ø

  • 55,000¿ø

    1,650P (3%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
  • 4/27(Åä) À̳» ¹ß¼Û ¿¹Á¤  (¼­¿ï½Ã °­³²±¸ »ï¼º·Î 512)
  • ¹«·á¹è¼Û
  • ÁÖ¹®¼ö·®
    °¨¼Ò Áõ°¡
    • À̺¥Æ®/±âȹÀü

    • ¿¬°üµµ¼­

    • »óÇ°±Ç

    AD

    ¸ñÂ÷

    Contents

    Preface xv

    1 Renewable Resources and Environmental Quality 1

    1.1 Renewable Resources and Energy 1

    1.2 Human Demand and Footprint 5

    1.2.1 Human Demand 5

    1.2.2 Human Footprints 6

    1.2.2.1 Water Footprints 7

    1.2.2.2 Gray Water System 7

    1.3 Challenges and Opportunities 9

    1.3.1 Excessive Nitrogen Runoff 10

    1.3.2 Phosphorus Depletion 10

    1.3.3 Carbon Pollution 11

    1.3.4 Peak Oil 11

    1.3.5 Climate Change 11

    1.4 Carrying Capacity 11

    1.5 Air, Water, and Soil Quality Index 13

    1.5.1 Air Quality Standards 13

    1.5.2 Air Quality Index 13

    1.5.3 Water Quality Index 14

    1.5.4 Soil Quality Index 17

    1.5.4.1 F1 (Scope) 17

    1.5.4.2 F2 (Frequency) 17

    1.5.4.3 F3 (Amplitude) 17

    1.5.4.4 Soil Quality Index (SQI) 18

    1.6 Air, Water, and Soil Pollution 19

    1.6.1 Air Pollution 19

    1.6.2 Water Pollution 19

    1.7 Life Cycle Assessment 21

    1.7.1 LCA Tools 22

    1.8 Environmental Laws 22

    1.9 Exercise 24

    1.9.1 Questions 24

    1.9.2 Assignment 25

    1.9.3 Problems 25

    1.9.4 Projects 25

    1.9.4.1 Xiongan Project 25

    1.9.4.2 Community Project 26

    References 26

    2 Health Risk Assessment 29

    2.1 Environmental Health 29

    2.2 Environmental Standards 31

    2.3 Health Risk Assessment 36

    2.3.1 Hazard Identification 36

    2.3.2 Dose?Response Curves 37

    2.3.2.1 Nonlinear Dose?Response Assessment 37

    2.3.2.2 Linear Dose?Response Assessment 40

    2.3.3 Exposure Assessment 41

    2.3.3.1 Cancer Screening Calculation for Dermal Contaminants in Water 41

    2.3.3.2 Noncancer Screening Calculation for Contaminants in Residential Soil 43

    2.3.4 DBP Health Advisory Concentration 44

    2.3.5 Risk Characterizations 46

    2.4 QSAR Analysis in HRA 46

    2.4.1 Multiple Linear Regression (MLR) 48

    2.4.2 Validation of QSAR Models 49

    2.5 Quantification of Uncertainty 54

    2.5.1 Quantification of QSAR Model¡¯s Uncertainty 55

    2.5.2 Monte Carlo Simulation 56

    2.5.3 Comparison of Uncertainties of Different QSAR Models 60

    2.5.4 Sensitivity Analysis by Monte Carlo Simulation 61

    2.5.5 Computer Software for Quantitative Risk Assessment 62

    2.6 Exercise 62

    2.6.1 Questions 62

    2.6.2 Calculation 62

    2.6.3 Assignment 63

    2.6.4 Projects 63

    2.6.4.1 Xiongan Project 63

    2.6.4.2 Community Project 63

    References 63

    3 Twelve Design Principles of Sustainable Environmental Engineering 67

    3.1 Sustainability 67

    3.1.1 The United Nations Sustainable Development Goals 68

    3.2 Challenges and Opportunities 69

    3.2.1 Challenges 69

    3.2.2 Opportunities 71

    3.3 Sustainable Environmental Engineering 74

    3.3.1 SEE Metrics 76

    3.4 SEE Design Principles 78

    3.4.1 Principle 1: Integrated and Interconnected System Hierarchy 78

    3.4.2 Principle 2: Reliability on Spatial Scale 79

    3.4.3 Principle 3: System Resiliency on a Temporal Scale 80

    3.4.3.1 Principle 4: Efficiency of Renewable Material 80

    3.4.4 Principle 6: Prevention 82

    3.4.5 Principle 7: Recovery 83

    3.5 Principle 8: Separation 84

    3.5.1 Principle 9: Treatment 85

    3.5.2 Principle 10: Retrofitting and Remediation 86

    3.5.3 Principle 11: Optimization through Modeling and Simulation 86

    3.5.4 Principle 12: Balance Between Capital and Operating Costs 87

    3.6 Implementation of the SEE Design Principles 88

    3.6.1 Procedure to Implement SEE Design Principles 88

    3.6.2 Integration of SEE into Undergraduate Education 89

    3.7 Exercise 91

    3.7.1 Questions 91

    3.7.2 Calculation 91

    3.7.3 Projects 92

    3.7.3.1 Xiongan Project 92

    3.7.3.2 Community Projects 92

    3.7.3.3 Proposal Development 92

    References 93

    4 Integrated and Interconnected Systems95

    4.1 Principle 1 95

    4.2 Challenges and Opportunities 98

    4.2.1 Market Size of Solid Waste Management in China 98

    4.3 Integrated Solid Waste Management 103

    4.3.1 Integrated Solid Waste Management Market in China 103

    4.3.2 Strategy of ISWM 103

    4.3.3 LCA on Footprint of Solid Waste Recycle 109

    4.3.4 ISWM Data Analysis 115

    4.3.4.1 Calculations for Measuring Quantity 115

    4.3.4.2 Calculations for Composition 116

    4.3.5 Determining Waste Composition 117

    4.3.5.1 Moisture Content 117

    4.3.5.2 Calorific Value 117

    4.3.5.3 Chemical Composition 117

    4.3.5.4 Calorific Values 119

    4.3.5.5 Data Presentation 119

    4.3.6 Zero Waste 120

    4.3.7 Integrated Waster Resource Management (IWRM) 124

    4.3.8 Water Resource Recovery Facilities (WRRF) 127

    4.4 Integrated Air Quality Management (IAQM) 131

    4.5 Exercise 132

    4.5.1 Questions 132

    4.5.2 Calculation 133

    4.5.3 Projects 133

    4.5.3.1 Community Projects 133

    4.5.3.2 Xiongan Projects 134

    References 134

    5 Reliable Systems on a Spatial Scale 135

    5.1 Principle 2 135

    5.1.1 Central Versus Decentralized WWTP 136

    5.1.2 Best Practice for Small WWTPs 137

    5.2 Integrated System Approach 137

    5.2.1 The EPA Tools 137

    5.2.2 Integrated Engineering Design Example 137

    5.3 Scale-up of Laboratory or Pilot Design to Full-scale Plant 141

    5.3.1 Minimum Requirements for Validation Testing 141

    5.3.1.1 Collimated Beam Test 141

    5.3.2 Correlation of UV Sensitivity of Different Challenge Microorganisms with Target Microorganisms 143

    5.3.2.1 Sampling Ports 144

    5.3.3 Calculating the RED 145

    5.3.3.1 Flow Rate for Validation 146

    5.3.4 Uncertainty in Validation 149

    5.3.4.1 Calculating UIN for the Calculated Dose Approach 149

    5.3.4.2 Determining the Validated Dose and Validated Operating Conditions 149

    5.3.5 Collimated Beam Data Uncertainty 152

    5.3.6 Electrical Energy per Order (EE/O) 153

    5.4 Exercise 154

    5.4.1 Questions 154

    5.4.2 Calculation 154

    5.4.3 Projects 155

    5.4.3.1 Xiongan Design Project 155

    5.4.3.2 Community Proposal Project 155

    References 155

    6 Resiliency on Temporal Scale 157

    6.1 Principle 3 157

    6.2 Challenges and Opportunities 159

    6.3 Discharge Standards 159

    6.4 Population Growth 160

    6.5 Steady Versus Unsteady 162

    6.5.1 Equalization Basin 162

    6.6 Hydraulic Condition of Different Reactors 167

    6.7 Chemical Kinetics 168

    6.8 Group Theory Predicting Hydroxyl Radical Kinetic Constants 172

    6.9 Photocatalytic Oxidation of Halogen-substituted Meta-phenols by UV/TiO2 172

    6.10 Environmental Issues on Different Temporal Scales 178

    6.10.1 Correlation Between Temporal and Spatial Scales in the Sustainable Design of WTPs and WWTPs 178

    6.11 Exercise 181

    6.11.1 Questions 181

    6.11.2 Calculation 181

    6.11.3 Project 181

    6.11.3.1 Xiongan Project 181

    6.11.3.2 Community Proposal Project 182

    References 182

    7 Efficiency of Renewable Materials185

    7.1 Principle 4 185

    7.2 Stoichiometry 185

    7.3 Avoid the Addition of Chemicals 187

    7.3.1 Avoid Acid Addition 187

    7.3.2 Replacing Chlorination with UV Disinfection 193

    7.3.3 Anammox to Replace Nitrification/Denitrification 199

    7.3.3.1 Nitrogen Forms 199

    7.3.3.2 Nitrification 200

    7.3.3.3 Denitrification 200

    7.3.3.4 Anammox 201

    7.4 Design Efficient Reactors 203

    7.4.1 Cost of Different Volume Reactors 212

    7.5 Exercise 213

    7.5.1 Questions 213

    7.5.2 Calculation 213

    7.5.3 Project 213

    7.5.3.1 Xiongan Project 213

    7.5.3.2 Proposal Project 214

    References 214

    8 Efficiency of Renewable Energy 215

    8.1 Principle 5 215

    8.2 Challenges and Opportunities 216

    8.2.1 Inefficient Combustion of Fossil Fuels 216

    8.2.2 Challenges in China 217

    8.3 Energy Conservation Laws 218

    8.3.1 Thermodynamics Laws 218

    8.3.2 The First Thermodynamic Law 221

    8.3.3 The Second Thermodynamic Law 221

    8.3.3.1 Energy Conversion 221

    8.3.3.2 Enthalpy 222

    8.3.3.3 Conservation of Energy 222

    8.4 Energy Balances 223

    8.4.1 Physical Framework by Thermodynamics 224

    8.4.2 Exergy 225

    8.5 Benchmarks for Unit Energy Consumption in WTP and WWTP 225

    8.5.1 Unit Energy Consumption Values in WTP 225

    8.5.2 Unit Energy Consumption Values in WWTP 225

    8.6 Energy Consumption by Pump 232

    8.6.1 Flow in Pipe 232

    8.6.2 Pump Station 232

    8.7 Solar Energy 233

    8.7.1 Calculation Solar Energy 233

    8.7.2 Solar-powered WWTP 235

    8.8 Exercise 235

    8.8.1 Questions 235

    8.8.2 Calculation 236

    8.8.3 Project 236

    8.8.3.1 Xiongan Project 236

    8.8.3.2 Community Project 236

    References 236

    9 Prevention 239

    9.1 Principle 6 239

    9.2 Challenges and Opportunities 240

    9.3 Green Infrastructure 241

    9.3.1 Integrated Urban Water Management Paradigm 241

    9.3.2 Green Infrastructure Design Tools 242

    9.3.3 Green Infrastructure Modeling Tools 242

    9.4 Design Tools of Rain Harvest 244

    9.4.1 Determine the Water Demand of a Public Bathroom 244

    9.4.2 Determine the Roof Area and the Tank Size 247

    9.4.3 Design Rainwater System by Cumulative Plot Method 250

    9.4.4 Design Rainwater System Design to Achieve the Smallest Roof Area 252

    9.4.4.1 Flowchart for Rainwater System 252

    9.4.5 Determine Roof Area for a Rainwater Harvest Tank Without Adding City Water in the First Year 254

    9.4.6 Design Rainwater Harvest Tank for Specific Roof Areas 257

    9.4.7 Design a Rainwater Harvest Tank of the Optimized Size 260

    9.5 Design Anaerobic Digester Reactor 262

    9.6 Green Roof Design 263

    9.6.1 Life Cycle Assessment 265

    9.6.2 Footprint 266

    9.7 Rain Garden Design 268

    9.7.1 Life Cycle Assessment 270

    9.7.2 Environmental Impacts of Aluminum 271

    9.7.3 Cost and Benefit Analysis of Rain Garden 271

    9.7.4 Water Footprint 274

    9.7.5 Nitrogen and Phosphorus Footprint 274

    9.8 Exercise 276

    9.8.1 Questions 276

    9.8.2 Calculations 276

    9.8.3 Projects 276

    9.8.3.1 Xiongan Project 276

    9.8.3.2 Community Proposal Project 277

    References 277

    10 Recovery 279

    10.1 Principle 7 279

    10.2 Phosphorus Removal from Wastewater 280

    10.2.1 Phosphorus Removal in Conventional Treatment 281

    10.2.2 Chemical Phosphorus Removal 281

    10.3 Phosphorus Recovery 283

    10.3.1 Enhanced Phosphorus Uptake 283

    10.3.2 Struvite Precipitation 284

    10.4 Capital and Operation Cost of Reclaiming Water for Reuse 286

    10.4.1 Building 286

    10.4.2 Headwork 290

    10.4.3 Oxidation 293

    10.4.4 Aerobic SBR 297

    10.4.5 MBR 301

    10.4.6 Microfiltration 304

    10.4.7 Reverse Osmosis 308

    10.4.8 Filtration 311

    10.4.9 Disinfection 314

    10.5 Exercise 317

    10.5.1 Questions 317

    10.5.2 Calculations 318

    10.5.3 Projects 319

    10.5.3.1 Xiongan Project 319

    10.5.3.2 Community Proposal Project 319

    References 319

    11 Separation 321

    11.1 Principle 8 321

    11.2 Challenges and Opportunities 323

    11.3 Precipitation 324

    11.4 Coagulation and Flocculation 325

    11.4.1 Camp?Stein Equation 326

    11.4.2 Static and Plug-flow Reactor Mixers 327

    11.4.3 Power, Pressure, and Pump in Reactors 327

    11.5 Membrane Filtration Systems 333

    11.6 Activated Carbon Adsorption 335

    11.7 Anaerobic Membrane Biological Reactor 339

    11.8 Air Stripping 341

    11.9 LCA Tools for WWTPs 350

    11.10 Capital and O&M Costs of Membrane Filtration 353

    11.11 Exercise 361

    11.11.1 Questions 361

    11.11.2 Calculation 361

    11.11.3 Projects 361

    11.11.3.1 Xiongan Project 361

    11.11.3.2 Community Projects 362

    References 362

    12 Treatment 365

    12.1 Principle 9 365

    12.2 Challenges 365

    12.3 Environmental Regulations 366

    12.4 UV Disinfection 370

    12.4.1 History 370

    12.4.2 Photochemistry 370

    12.4.3 UV Dose 371

    12.4.4 Absorption Coefficient 372

    12.4.5 Fluence 372

    12.4.6 UV Dose?Response 374

    12.5 Virus Sensitivity Index of UV Disinfection 376

    12.5.1 Virus Sensitivity Index (VSI) 376

    12.5.2 Applications of VSI 379

    12.6 Bacteria Sensitivity Index (BSI) with Shoulder Effect 381

    12.6.1 Bacteria Sensitivity Index (BSI) 381

    12.6.2 Shoulder Broadness Index (SBI) 382

    12.6.3 Transformation of H into ¥ÄH/¥ÄHr382

    12.6.4 Validation of the Models 384

    12.6.5 Application of the Model 384

    12.6.5.1 Experimental Data of UV Disinfection of ARBs 384

    12.6.5.2 Error Analysis of Predicted H Compared with the Observed H 386

    12.6.5.3 Prediction of Fluence Required at 5 log I for ARBs 386

    12.7 Emerging Treatment Technologies 386

    12.8 Design Considerations of UV Disinfection System 389

    12.8.1 UV Dose 390

    12.8.2 Hydraulic Retention Time 390

    12.8.3 UV Lamps 391

    12.8.4 Turbidity 391

    12.8.5 Typical Design Lives of Major UV Components 391

    12.9 Exercise 392

    12.9.1 Questions 392

    12.9.2 Calculations 392

    12.9.3 Projects 392

    12.9.3.1 Xiongan Project 392

    12.9.3.2 Community Proposal Project 392

    References 392

    13 Green Retrofitting and Remediation 395

    13.1 Principle 10 395

    13.2 Challenges of WWTP Design 395

    13.2.1 Energy Efficiency of Water and Wastewater Treatment 396

    13.3 Anaerobic Digestion for Biogas Production 396

    13.3.1 Operation Guidelines for Wastewater Treatment Plants 397

    13.4 Best Practice Benchmark 399

    13.5 Green Retrofitting 400

    13.5.1 Energy Auditing 400

    13.5.1.1 Phototrophic System 404

    13.5.1.2 Renewable Energy for WWTPs 406

    13.6 Sludge Processing and Disposal 406

    13.6.1 Design of Wastewater Sludge Thickeners 407

    13.6.2 Suspended Solids Removal Efficiency 408

    13.6.3 Anaerobic Digester Capacity 409

    13.6.4 Aerobic Sludge Digestion 409

    13.6.5 Retrofitting Strategies of WWTPs 410

    13.7 Green Remediation 410

    13.7.1 Green Remediation Metrics and Methodology 411

    13.7.2 Approaches to Reducing Footprints 416

    13.7.2.1 Approaches to Reducing Materials and Waste Footprints 416

    13.7.2.2 Approaches to Reducing Water Footprints 416

    13.7.2.3 Approaches to Reducing Energy and Air Footprints 417

    13.7.3 Evaluation Methods 419

    13.7.3.1 Greenhouse Gas Emissions Evaluation Fact Sheet 419

    13.7.3.2 Future Land Use 420

    13.7.3.3 Green Building 420

    13.7.3.4 Post-remediation Site Conditions 420

    13.8 Tools 421

    13.8.1 SiteWiseTM 421

    13.9 Exercise 421

    13.9.1 Questions 421

    13.9.2 Calculation 421

    13.9.3 Projects 422

    13.9.3.1 Xiongan Project 422

    13.9.3.2 Community Project Proposal 422

    References 423

    14 Optimization through Modeling and Simulation 425

    14.1 Principle 425

    14.2 Introduction 425

    14.2.1 History of Landfill Leachate Quality 426

    14.2.2 Leachate Characteristics 426

    14.3 Challenges and Opportunities 428

    14.4 Modeling of the Fenton Process 428

    14.4.1 Kinetic Model of DMPO?OH EPR Signal 429

    14.5 Simulation 436

    14.6 Optimization 437

    14.6.1 Fenton Oxidation of Landfill Leachate 437

    14.6.2 Optimization Fenton Oxidation of Leachate 439

    14.6.3 Optimum Operating Conditions 440

    14.6.3.1 pH 440

    14.6.3.2 Reaction Time 440

    14.6.3.3 Effect of Reaction Time on Fenton Oxidation 440

    14.6.3.4 Temperature 442

    14.6.3.5 Fenton Reagent Dose 442

    14.6.3.6 Generalized Fenton Dosing for Landfill Leachate Treatment 443

    14.6.3.7 Total COD Removal Under Different LCOD 444

    14.6.3.8 Effect of LCOD on COD Removal Efficiency 445

    14.6.3.9 Effect of LCOD on Biodegradability 445

    14.6.3.10 Effect of LCOD on Cost of Fenton Process Treatment for Landfill Leachate 446

    14.7 Validation and Uncertainty 447

    14.8 Exercise 448

    14.8.1 Questions 448

    14.8.2 Calculations 449

    14.8.3 Projects 449

    14.8.3.1 Xiongan Project 449

    14.8.3.2 Community Project 449

    References 450

    15 Life Cycle Cost and Benefit Analysis 453

    15.1 Principle 453

    15.2 Challenges and Opportunities 453

    15.3 Optimum Pipe Size 454

    15.4 Advanced Oxidation Process Costs 461

    15.4.1 UV Disinfection 461

    15.5 Recovery of N and P 465

    15.5.1 Yield Coefficients 466

    15.5.2 Capital Cost of P Recovery Systems 469

    15.5.3 Activated Sludge 469

    15.5.4 Two-Stage Activated Sludge 474

    15.5.5 Three-Stage Activated Sludge 477

    15.5.6 Three-Stage Activated Sludge with Alum Addition 479

    15.5.7 Three-Stage Activated Sludge with Alum and Tertiary Clarifier 482

    15.5.8 Three-Stage Activated Sludge with Alum, Tertiary Clarifier, and Filtration 484

    15.5.9 Three-Stage Activated Sludge with Tertiary Clarifier and Activated Aluminum Absorption 487

    15.5.10 Three-Stage Activated Sludge with Tertiary Clarifier and Activated Absorption 489

    15.6 Entrepreneur in SEE 492

    15.6.1 Business Plan 493

    15.6.2 Finance of Environmental Infrastructure 493

    15.6.3 EEI Financing 493

    15.6.4 Financial Planning 495

    15.7 Innovation in SEE 495

    15.7.1 Innovative Technologies 495

    15.7.2 Innovative Consumer Products 495

    15.7.2.1 SteriPEN 495

    15.7.2.2 Drinkable Book¢â 496

    15.7.3 Future of SEE 496

    15.8 Exercise 497

    15.8.1 Questions 497

    15.8.2 Calculations 497

    15.8.3 Projects 497

    15.8.3.1 Xiongan Project 498

    15.8.3.2 Community Project Proposal 498

    15.8.3.3 Course Project and Beyond 499

    References 499

    Index 501

    ÀúÀÚ¼Ò°³

    WALTER Z. TAMG [Àú] ½ÅÀ۾˸² SMS½Åû
    »ý³â¿ùÀÏ -

    ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.

    ÄÄÇ»ÅÍ ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

      ¸®ºä

      0.0 (ÃÑ 0°Ç)

      100ÀÚÆò

      ÀÛ¼º½Ã À¯ÀÇ»çÇ×

      ÆòÁ¡
      0/100ÀÚ
      µî·ÏÇϱâ

      100ÀÚÆò

      0.0
      (ÃÑ 0°Ç)

      ÆǸÅÀÚÁ¤º¸

      • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

      »óÈ£

      (ÁÖ)±³º¸¹®°í

      ´ëÇ¥ÀÚ¸í

      ¾Èº´Çö

      »ç¾÷ÀÚµî·Ï¹øÈ£

      102-81-11670

      ¿¬¶ôó

      1544-1900

      ÀüÀÚ¿ìÆíÁÖ¼Ò

      callcenter@kyobobook.co.kr

      Åë½ÅÆǸž÷½Å°í¹øÈ£

      01-0653

      ¿µ¾÷¼ÒÀçÁö

      ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

      ±³È¯/ȯºÒ

      ¹ÝÇ°/±³È¯ ¹æ¹ý

      ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

      ¹ÝÇ°/±³È¯°¡´É ±â°£

      º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
      ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

      ¹ÝÇ°/±³È¯ ºñ¿ë

      º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
      »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

      ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

      ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
      (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

      ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

      ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

      ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

      ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

      »óÇ° Ç°Àý

      °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

      ¼ÒºñÀÚ ÇÇÇغ¸»ó
      ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

      ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

      ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

      (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

      (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
      (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

      ¹è¼Û¾È³»

      • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

      • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

      • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

      • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

      • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë