¿Ü±¹µµ¼
ÄÄÇ»ÅÍ
General
2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.
Á¤°¡ |
103,160¿ø |
---|
81,660¿ø (21%ÇÒÀÎ)
4,090P (5%Àû¸³)
ÇÒÀÎÇýÅÃ | |
---|---|
Àû¸³ÇýÅà |
|
|
|
Ãß°¡ÇýÅÃ |
|
¡Ø Äڷγª19·Î ÀÎÇÑ Ç×°øÆí °¨¼Ò·Î ÇØ¿ÜÁÖ¹®¿ø¼ÀÇ ¹è¼ÛÀÌ Æò¼Òº¸´Ù ÃÖ´ë ÀÏÁÖÀÏ Á¤µµ Áö¿¬µÉ ¼ö ÀÖÀ¸´Ï ÁÖ¹®¿¡ Âü°í ºÎʵ右´Ï ´õº¸±â
ÀÌ»óǰÀÇ ºÐ·ù
ƯÀÌ»çÇ×
ÇØ¿ÜÁÖ¹®¿ø¼/Àϼ´Â °í°´ÀÇ ¿äû¿¡ ÀÇÇØ ÁÖ¹®ÇÏ´Â '°³ÀοÀ´õ' »óǰÀ¸·Î, ´Ü¼ø º¯½É/Âø¿À·Î ÀÎÇÑ Ãë¼Ò, ¹Ýǰ, ±³È¯ÀÌ ºÒ°¡ÇÕ´Ï´Ù.
´Ü, ǰÀý/ÀýÆÇÀÎ °æ¿ì¿Í °áÁ¦¿Ï·á ´çÀÏ 24½Ã±îÁö´Â ¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹Ýǰ/±³È¯/ȯºÒ ¿¡¼ Ãë¼Ò½ÅûÀÌ °¡´ÉÇÕ´Ï´Ù.
ºÎµæÀÌÇÑ »çÁ¤À¸·Î ÀÎÅÍÆÄÅ© Á÷¸ÅÀÔ ÇØ¿ÜÁÖ¹®¾ç¼/Àϼ¸¦ °í°´º¯½É »çÀ¯·Î ¹Ýǰ ½ÅûÀ» ÇÒ °æ¿ì '¼öÀÔÁ¦¹Ýºñ¿ë'À» ȯºÒ±Ý¾×¿¡¼ Â÷°¨Çϰí ȯºÒÇÕ´Ï´Ù.
¶ÇÇÑ, ÇØ¿Ü °Å·¡Ã³ »çÁ¤¿¡ ÀÇÇÏ¿© ÁÖ¹®»óǰÀÌ Ç°ÀýÀ̳ª ÀÔ°í Áö¿¬µÉ ¼öµµ ÀÖ´Ù´Â Á¡µµ ¾Ë·Á µå¸³´Ï´Ù.
¡Ø ¼öÀÔÁ¦¹Ýºñ¿ëÀ̶õ ÆÇ¸Å°¡ÀÇ 20% (¹Ýǰ/Ãë¼Ò ¼ö¼ö·á´Â, ¼öÀÔÁ¦¹Ýºñ¿ë(¼ö¼Ûºñ¿ë, °ü¼¼»çºñ, º¸¼¼Ã¢°í·á, ³»·ú¿î¼Ûºñ, Åë°üºñ µî)°ú Àç°í¸®½ºÅ©(¹ÌÆÇ¸Å ¸®½ºÅ©, ȯÂ÷¼Õ)¿¡ µû¸¥ ºñ¿ëÀ» Æ÷ÇÔÇϸç, ÆÇ¸Å°¡¿¡ »ó°ü¾øÀÌ Àϰý 20%°¡ Àû¿ëµË´Ï´Ù.)
Ã¥¼Ò°³
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase.
Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly.
You¡¯ll get the guidance you need to confidently:
Find and wrangle time series data
Undertake exploratory time series data analysis
Store temporal data
Simulate time series data
Generate and select features for a time series
Measure error
Forecast and classify time series with machine or deep learning
Evaluate accuracy and performance
ÀúÀÚ¼Ò°³
»ý³â¿ùÀÏ | - |
---|---|
Ãâ»ýÁö | - |
Ãâ°£µµ¼ | 0Á¾ |
ÆÇ¸Å¼ö | 0±Ç |
ÇØ´çÀÛ°¡¿¡ ´ëÇÑ ¼Ò°³°¡ ¾ø½À´Ï´Ù.
ÁÖ°£·©Å·
´õº¸±â»óǰÁ¤º¸Á¦°ø°í½Ã
À̺¥Æ® ±âȹÀü
ÄÄÇ»ÅÍ ºÐ¾ß¿¡¼ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥
¸®ºä
±¸¸Å ÈÄ ¸®ºä ÀÛ¼º ½Ã, ºÏÇǴϾð Áö¼ö ÃÖ´ë 600Á¡
±â´ëÆò
±â´ëÆò
±³È¯/ȯºÒ
±³È¯/ȯºÒ ¹æ¹ý |
¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹Ýǰ/±³È¯/ȯºÒ¡¯ ¿¡¼ ½ÅûÇÔ, 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¶Ç´Â °í°´¼¾ÅÍ(1577-2555) ÀÌ¿ë °¡´É |
---|---|
±³È¯/ȯºÒ °¡´É ±â°£ |
°í°´º¯½ÉÀº Ãâ°í¿Ï·á ´ÙÀ½³¯ºÎÅÍ 14ÀÏ ±îÁö¸¸ ±³È¯/ȯºÒÀÌ °¡´ÉÇÔ |
±³È¯/ȯºÒ ºñ¿ë |
°í°´º¯½É ¶Ç´Â ±¸¸ÅÂø¿ÀÀÇ °æ¿ì¿¡¸¸ 2,500¿ø Åùèºñ¸¦ °í°´´ÔÀÌ ºÎ´ãÇÔ |
±³È¯/ȯºÒ ºÒ°¡»çÀ¯ |
¹ÝǰÁ¢¼ö ¾øÀÌ ¹Ý¼ÛÇϰųª, ¿ìÆíÀ¸·Î º¸³¾ °æ¿ì »óǰ È®ÀÎÀÌ ¾î·Á¿ö ȯºÒÀÌ ºÒ°¡ÇÒ ¼ö ÀÖÀ½ |
¼ÒºñÀÚ ÇÇÇØº¸»ó |
¼ÒºñÀÚ ÇÇÇØº¸»óÀÇ ºÐÀïó¸® µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á±âÁØ(°øÁ¤°Å·¡À§¿øÈ¸ °í½Ã)¿¡ µû¶ó ºñÇØ º¸»ó ¹ÞÀ» ¼ö ÀÖÀ½ |
±âŸ |
µµ¸Å»ó ¹× Á¦ÀÛ»ç »çÁ¤¿¡ µû¶ó ǰÀý/ÀýÆÇ µîÀÇ »çÀ¯·Î ÁÖ¹®ÀÌ Ãë¼ÒµÉ ¼ö ÀÖÀ½(ÀÌ °æ¿ì ÀÎÅÍÆÄÅ©µµ¼¿¡¼ °í°´´Ô²² º°µµ·Î ¿¬¶ôÇÏ¿© °íÁöÇÔ) |
¹è¼Û¾È³»
ÀÎÅÍÆÄÅ© µµ¼ »óǰÀº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óǰÀ» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù
Ãâ°í°¡´É ½Ã°£ÀÌ ¼·Î ´Ù¸¥ »óǰÀ» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óǰÀ» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.
±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÏ¿©, ÀÎÅÍÆÄÅ© ¿Ü Ÿ¾÷ü ¹è¼Û»óǰÀÎ °æ¿ì ¹ß¼ÛµÇÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù.
¹è¼Ûºñ
µµ¼(Áß°íµµ¼ Æ÷ÇÔ) ±¸¸Å |
2,000¿ø (1¸¸¿øÀÌ»ó ±¸¸Å ½Ã ¹«·á¹è¼Û) |
---|---|
À½¹Ý/DVD/ÀâÁö/¸¸È ±¸¸Å |
2,000¿ø (2¸¸¿øÀÌ»ó ±¸¸Å ½Ã ¹«·á¹è¼Û) |
µµ¼¿Í À½¹Ý/DVD/ÀâÁö/¸¸È/ |
2,000¿ø (1¸¸¿øÀÌ»ó ±¸¸Å ½Ã ¹«·á¹è¼Û) |
¾÷üÁ÷Á¢¹è¼Û»óǰ ±¸¸Å |
¾÷üº° »óÀÌÇÑ ¹è¼Ûºñ Àû¿ë |