간편결제, 신용카드 청구할인
인터파크 롯데카드 5% (29,930원)
(최대할인 10만원 / 전월실적 40만원)
북피니언 롯데카드 30% (22,050원)
(최대할인 3만원 / 3만원 이상 결제)
NH쇼핑&인터파크카드 20% (25,200원)
(최대할인 4만원 / 2만원 이상 결제)
Close

단단한 강화학습 : 강화학습 기본 개념을 제대로 정리한 인공지능 교과서

소득공제

2013년 9월 9일 이후 누적수치입니다.

판매지수 391
?
판매지수란?
사이트의 판매량에 기반하여 판매량 추이를 반영한 인터파크 도서에서의 독립적인 판매 지수입니다. 현재 가장 잘 팔리는 상품에 가중치를 두었기 때문에 실제 누적 판매량과는 다소 차이가 있을 수 있습니다. 판매량 외에도 다양한 가중치로 구성되어 최근의 이슈도서 확인시 유용할 수 있습니다. 해당 지수는 매일 갱신됩니다.
Close
공유하기
정가

35,000원

  • 31,500 (10%할인)

    1,750P (5%적립)

할인혜택
적립혜택
  • I-Point 적립은 마이페이지에서 직접 구매확정하신 경우만 적립 됩니다.
추가혜택
배송정보
  • 8/12(금) 이내 발송 예정  (서울시 강남구 삼성로 512)
  • 무료배송
주문수량
감소 증가
  • 이벤트/기획전

  • 연관도서(8)

  • 상품권

AD

책소개

내용을 대폭 보강하여 20년 만에 개정된 강화학습 분야의 절대 바이블!

인공지능 분야에서 가장 활발하게 연구되고 있는 분야 중 하나인 강화학습은 복잡하고 불확실한 환경과 상호작용하는 학습자에게 주어지는 보상을 최대화하는 수치 계산적 학습 방법이다. 리처드 서튼과 앤드류 바르토는 이 책 《단단한 강화학습》을 통해 강화학습의 핵심적인 개념과 알고리즘을 분명하고 이해하기 쉽게 설명한다. 1판이 출간된 이후 새롭게 부각된 주제들을 추가하였고, 이미 다루었던 주제들도 최신 내용으로 업데이트하였다.

출판사 서평

내용을 대폭 보강하여 20년 만에 개정된 강화학습 분야의 절대 바이블!
강화학습의 핵심 개념과 최신 알고리즘을 쉽고 명료하게 이해한다!

인공지능 분야에서 가장 활발하게 연구되고 있는 분야 중 하나인 강화학습은 복잡하고 불확실한 환경과 상호작용하는 학습자에게 주어지는 보상을 최대화하는 수치 계산적 학습 방법이다. 리처드 서튼과 앤드류 바르토는 이 책 《단단한 강화학습》을 통해 강화학습의 핵심적인 개념과 알고리즘을 분명하고 이해하기 쉽게 설명한다. 1판이 출간된 이후 새롭게 부각된 주제들을 추가하였고, 이미 다루었던 주제들도 최신 내용으로 업데이트하였다.

1판과 마찬가지로 2판에서도 핵심적인 온라인 학습 알고리즘을 집중적으로 다루었는데, 보다 많은 수학적 내용을 별도의 글 상자 안에 추가하였다. 이 책은 크게 다음과 같은 세 부분으로 나누어진다.

■ 첫 번째 부분에서는 정확한 해법을 찾을 수 있는 표 기반 방법만을 적용하여 가능한 한 많은 강화학습 방법을 다루었다. 첫 번째 부분에 제시되는 많은 알고리즘은 2판에서 새롭게 추가된 것인데, 여기에는 UCB, 기댓값 살사, 이중 학습이 포함된다.
■ 두 번째 부분에서는 인공 신경망이나 푸리에 기반과 같은 주제를 다루는 절이 새롭게 추가되면서 첫 번째 부분에서 제시된 방법들이 함수 근사 기반의 방법으로 확장되었고, 비활성 정책 학습과 정책 경사도 방법에 대한 내용이 더욱 풍부해졌다.
■ 세 번째 부분에서는 강화학습이 심리학 및 신경 과학과 어떤 관계인지를 다루는 새로운 장들이 추가되었고, 알파고와 알파고 제로, 아타리 게임, IBM 왓슨의 내기 전략과 같은 사례 연구를 다루는 장이 업데이트되었다. 마지막 장에서는 강화학습이 미래 사회에 미칠 영향에 대해 논의하였다.

목차

CHAPTER 01 소개 1
1.1 강화학습 2
1.2 예제 5
1.3 강화학습의 구성 요소 7
1.4 한계와 범위 9
1.5 확장된 예제: 틱택토 10
1.6 요약 16
1.7 강화학습의 초기 역사 17
참고문헌 27

PART I 표 형태의 해법
CHAPTER 02 다중 선택 31
2.1 다중 선택 문제 32
2.2 행동 가치 방법 34
2.3 10중 선택 테스트 35
2.4 점증적 구현 38
2.5 비정상 문제의 흔적 40
2.6 긍정적 초깃값 42
2.7 신뢰 상한 행동 선택 44
2.8 경사도 다중 선택 알고리즘 46
2.9 연관 탐색(맥락적 다중 선택) 50
2.10 요약 51
참고문헌 및 역사적 사실 54

CHAPTER 03 유한 마르코프 결정 과정 57
3.1 에이전트-환경 인터페이스 58
3.2 목표와 보상 64
3.3 보상과 에피소드 66
3.4 에피소딕 작업과 연속적인 작업을 위한 통합 표기법 69
3.5 정책과 가치 함수 70
3.6 최적 정책과 최적 가치 함수 76
3.7 최적성과 근사 82
3.8 요약 83
참고문헌 및 역사적 사실 84

CHAPTER 04 동적 프로그래밍 89
4.1 정책 평가(예측) 90
4.2 정책 향상 94
4.3 정책 반복 97
4.4 가치 반복 100
4.5 비동기 동적 프로그래밍 103
4.6 일반화된 정책 반복 104
4.7 동적 프로그래밍의 효율성 106
4.8 요약 107
참고문헌 및 역사적 사실 109

CHAPTER 05 몬테카를로 방법 111
5.1 몬테카를로 예측 112
5.2 몬테카를로 행동 가치 추정 118
5.3 몬테카를로 제어 119
5.4 시작 탐험 없는 몬테카를로 제어 123
5.5 중요도추출법을 통한 비활성 정책 예측 126
5.6 점증적 구현 133
5.7 비활성 몬테카를로 제어 135
5.8 할인을 고려한 중요도추출법 138
5.9 결정 단계별 중요도추출법 139
5.10 요약 141
참고문헌 및 역사적 사실 143

CHAPTER 06 시간차 학습 145
6.1 TD 예측 146
6.2 TD 예측 방법의 좋은점 150
6.3 TD(0)의 최적성 153
6.4 살사: 활성 정책 TD 제어 157
6.5 Q 학습: 비활성 정책 TD 제어 160
6.6 기댓값 살사 162
6.7 최대화 편차 및 이중 학습 163
6.8 게임, 이후상태, 그 밖의 특별한 경우들 166
6.9 요약 168
참고문헌 및 역사적 사실 169

CHAPTER 07 n단계 부트스트랩 171
7.1 n단계 TD 예측 172
7.2 n단계 살사 177
7.3 n단계 비활성 정책 학습 179
7.4 제어 변수가 있는 결정 단계별 방법 181
7.5 중요도추출법을 사용하지 않는 비활성 정책 학습: n단계 트리 보강 알고리즘 184
7.6 통합 알고리즘: n단계 Q(σ) 187
7.7 요약 189
참고문헌 및 역사적 사실 190

CHAPTER 08 표에 기반한 방법을 이용한 계획 및 학습 191
8.1 모델과 계획 192
8.2 다이나: 계획, 행동, 학습의 통합 194
8.3 모델이 틀렸을 때 199
8.4 우선순위가 있는 일괄처리 202
8.5 기댓값 갱신 대 표본 갱신 206
8.6 궤적 표본추출 210
8.7 실시간 동적 프로그래밍 213
8.8 결정 시점에서의 계획 217
8.9 경험적 탐색 219
8.10 주사위 던지기 알고리즘 221
8.11 몬테카를로 트리 탐색 223
8.12 요약 227
8.13 1부 요약: 차원 228
참고문헌 및 역사적 사실 231

PART II 근사적 해법
CHAPTER 09 근사를 이용한 활성 정책 예측 237
9.1 가치 함수 근사 238
9.2 예측 목적(VE) 239
9.3 확률론적 경사도와 준경사도 방법 241
9.4 선형 방법 246
9.5 선형 방법을 위한 특징 만들기 253
9.6 시간 간격 파라미터를 수동으로 선택하기 268
9.7 비선형 함수 근사: 인공 신경망 269
9.8 최소 제곱 TD 275
9.9 메모리 기반 함수 근사 278
9.10 커널 기반 함수 근사 280
9.11 활성 정책 학습에 대한 보다 깊은 관찰: 관심과 강조 282
9.12 요약 285
참고문헌 및 역사적 사실 286

CHAPTER 10 근사를 적용한 활성 정책 제어 293
10.1 에피소딕 준경사도 제어 294
10.2 준경사도 n단계 살사 297
10.3 평균 보상: 연속적 작업을 위한 새로운 문제 설정 300
10.4 할인된 설정에 대한 반대 304
10.5 미분 준경사도 n단계 살사 307
10.6 요약 308
참고문헌 및 역사적 사실 308

CHAPTER 11 근사를 활용한 비활성 정책 방법 311
11.1 준경사도 방법 312
11.2 비활성 정책 발산의 예제 315
11.3 치명적인 삼위일체 320
11.4 선형 가치 함수 기하 구조 322
11.5 벨만 오차에서의 경사도 강하 327
11.6 벨만 오차는 학습할 수 없다 332
11.7 경사도 TD 방법 337
11.8 강한 TD 방법 341
11.9 분산 줄이기 343
11.10 요약 345
참고문헌 및 역사적 사실 346

CHAPTER 12 적격 흔적 349
12.1 λ 이득 350
12.2 TD(λ) 355
12.3 중단된 n단계 λ 이득 방법 359
12.4 다시 갱신하기: 온라인 λ 이득 알고리즘 361
12.5 진정한 온라인 TD(λ) 363
12.6 몬테카를로 학습에서의 더치 흔적 366
12.7 살사(λ) 368
12.8 가변 λ 및 γ 372
12.9 제어 변수가 있는 비활성 정책 흔적 374
12.10 왓킨스의 Q(λ)에서 트리 보강(λ)로 378
12.11 흔적을 이용한 안정적인 비활성 정책 방법 381
12.12 구현 이슈 383
12.13 결론 384
참고문헌 및 역사적 사실 386

CHAPTER 13 정책 경사도 방법 389
13.1 정책 근사 및 정책 근사의 장점 390
13.2 정책 경사도 정리 393
13.3 REINFORCE: 몬테카를로 정책 경사도 395
13.4 기준값이 있는 REINFORCE 399
13.5 행동자-비평자 방법 401
13.6 연속적인 문제에 대한 정책 경사도 403
13.7 연속적 행동을 위한 정책 파라미터화 406
13.8 요약 408
참고문헌 및 역사적 사실 409

PART III 더 깊이 들여다보기
CHAPTER 14 심리학 413
14.1 예측과 제어 414
14.2 고전적 조건화 416
14.3 도구적 조건화 433
14.4 지연된 강화 438
14.5 인지 지도 440
14.6 습관적 행동과 목표 지향적 행동 442
14.7 요약 447
참고문헌 및 역사적 사실 449

CHAPTER 15 신경과학 457
15.1 신경과학 기본 458
15.2 보상 신호, 강화 신호, 가치, 예측 오차 460
15.3 보상 예측 오차 가설 463
15.4 도파민 465
15.5 보상 예측 오차 가설에 대한 실험적 근거 469
15.6 TD 오차/도파민 유사성 473
15.7 신경 행동자-비평자 479
15.8 행동자와 비평자 학습 규칙 482
15.9 쾌락주의 뉴런 488
15.10 집단적 강화학습 490
15.11 뇌에서의 모델 기반 방법 494
15.12 중독 496
15.13 요약 497
참고문헌 및 역사적 사실 501

CHAPTER 16 적용 및 사례 연구 511
16.1 TD-가몬 511
16.2 사무엘의 체커 선수 518
16.3 왓슨의 이중 내기 522
16.4 메모리 제어 최적화 526
16.5 인간 수준의 비디오 게임 실력 531
16.6 바둑 게임에 통달하다 539
16.7 개인화된 웹 서비스 550
16.8 열 상승 554

CHAPTER 17 프론티어 559
17.1 일반적인 가치 함수 및 보조 작업 559
17.2 옵션을 통한 시간적 추상화 562
17.3 관측과 상태 565
17.4 보상 신호의 설계 572
17.5 남아 있는 이슈들 576
17.6 인공지능의 미래 580
참고문헌 및 역사적 사실 584

참고문헌 588
찾아보기 626

본문중에서

이 책이 처음 출간된 1998년 이후로 20년 동안 인공지능 기술은 엄청나게 발전했다. 강화학습을 비롯한 기계학습 기술의 발전은 인공지능의 발전에 큰 동력을 제공해 주었다. 기계학습 기술의 발전에는 컴퓨터의 계산 능력이 눈부시게 향상된 것이 한몫을 했지만, 새로운 이론과 알고리즘의 개발 또한 중요한 역할을 했다. 이러한 변화가 있었음에도 이 책의 2판 작업이 오랜 시간 지체되어 2012년이 되어서야 작업을 시작할 수 있었다. 2판의 목적은 이 책을 처음 출간했을 때와 다르지 않다. 즉, 관련된 모든 분야의 독자들이 강화학습의 핵심 개념과 알고리즘을 쉽고 명료하게 이해할 수 있도록 하는 것이다.
_xviii페이지(머리말 중에서)

다음과 같은 학습 문제를 생각해 보자. k개의 서로 다른 옵션이나 행동 중 하나를 반복적으로 선택해야 한다. 매 선택 후에는 숫자로 된 보상이 주어진다. 이때 보상을 나타내는 값은 선택된 행동에 따라 결정되는 정상 확률 분포(stationary probability distribution, 시간에 따라 변하지 않는 확률 분포_옮긴이)로부터 얻어진다. 선택의 목적은 일정 기간, 예를 들면 행동을 1,000번 선택하는 기간 또는 1,000개의 시간 간격(time step) 동안 주어지는 보상의 총량에 대한 기댓값을 최대화하는 것이다.
_32페이지

또 다른 합리적인 답변은 상태 A를 한 번 마주쳤고 그에 따른 이득이 0이어서 V(A)의 값을 0으로 추정했다는 사실을 단순히 관찰하는 것이다. 이 답변은 일괄 몬테카를로 방법이 주는 답변이다. 이것이 훈련 데이터에 대한 최소 제곱 오차를 도출하는 답변이라는 점에 주목하라. 사실, 이 답변은 훈련 데이터에 대해 0의 오차를 도출한다.
_155페이지

과다 적합은 제한된 훈련 데이터에 기반하여 많은 자유도를 갖고 함수를 조정하는 모든 함수 근사 방법에서 문제가 된다. 제한된 훈련 데이터에 구속받지 않는 온라인 강화학습에서는 이러한 문제가 덜하지만, 효과적으로 일반화하는 것은 여전히 중요한 이슈다. 과다 적합은 일반적으로 ANN이 갖는 문제이지만, 아주 많은 수의 가중치를 갖는 경향성 때문에 심층 ANN의 경우에는 더 심각한 문제가 된다.
_272페이지

레스콜라-바그너 모델 같은 시행 단계 모델과는 반대로, TD 모델은 실시간real-time 모델이다. 레스콜라-바그너 모델에서 단일 단계 t는 전체 조건화 시도를 나타낸다. TD 모델은 조건화 시도가 발생하는 시간 도중에 어떤 일이 일어나는지 또는 조건화 시도 사이에 무엇이 발생하는지에 관한 자세한 사항들에 신경 쓰지 않는다. 각각의 조건화 시도 과정 중에 동물은 특정한 시각에 특정한 기간 동안 발생하는 다양한 자극을 경험할 수도 있다.
_423페이지

관련이미지

저자소개

리처드 서튼 [저] 신작알림 SMS신청
생년월일 -

해당작가에 대한 소개가 없습니다.

김성우 [역] 신작알림 SMS신청
생년월일 -

연세대학교 천문우주학과에서 인공위성 자세/궤도 제어에 지도학습을 적용한 연구로 박사학위를 받았고, 쎄트렉아이에서 인공위성 지상 시스템 엔지니어로 근무했다. 새로운 모험을 위해 트리마란에서 인공위성 분야 기획/연구에 참여했다. 현재는 한화시스템에서 인공위성 시스템 엔지니어로서 더 큰 모험을 즐기고 있다.

리뷰

0.0 (총 0건)

구매 후 리뷰 작성 시, 북피니언 지수 최대 600점

리뷰쓰기

기대평

작성시 유의사항

평점
0/200자
등록하기

기대평

10.0

판매자정보

  • 인터파크도서에 등록된 오픈마켓 상품은 그 내용과 책임이 모두 판매자에게 있으며, 인터파크도서는 해당 상품과 내용에 대해 책임지지 않습니다.

상호

(주)교보문고

대표자명

안병현

사업자등록번호

102-81-11670

연락처

1544-1900

전자우편주소

callcenter@kyobobook.co.kr

통신판매업신고번호

01-0653

영업소재지

서울특별시 종로구 종로 1(종로1가,교보빌딩)

교환/환불

반품/교환 방법

‘마이페이지 > 취소/반품/교환/환불’ 에서 신청 또는 1:1 문의 게시판 및 고객센터(1577-2555)에서 신청 가능

반품/교환가능 기간

변심 반품의 경우 출고완료 후 6일(영업일 기준) 이내까지만 가능
단, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내

반품/교환 비용

변심 혹은 구매착오로 인한 반품/교환은 반송료 고객 부담
상품이나 서비스 자체의 하자로 인한 교환/반품은 반송료 판매자 부담

반품/교환 불가 사유

·소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우
(단지 확인을 위한 포장 훼손은 제외)

·소비자의 사용, 포장 개봉에 의해 상품 등의 가치가 현저히 감소한 경우
예) 화장품, 식품, 가전제품(악세서리 포함) 등

·복제가 가능한 상품 등의 포장을 훼손한 경우
예) 음반/DVD/비디오, 소프트웨어, 만화책, 잡지, 영상 화보집

·시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우

·전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우

상품 품절

공급사(출판사) 재고 사정에 의해 품절/지연될 수 있음

소비자 피해보상
환불지연에 따른 배상

·상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁해결 기준 (공정거래위원회 고시)에 준하여 처리됨

·대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함

(주) 인터파크 안전결제시스템 (에스크로) 안내

(주)인터파크의 모든 상품은 판매자 및 결제 수단의 구분없이 회원님들의 구매안전을 위해 안전결제 시스템을 도입하여 서비스하고 있습니다.
결제대금 예치업 등록 : 02-006-00064 서비스 가입사실 확인

배송안내

  • 교보문고 상품은 택배로 배송되며, 출고완료 1~2일내 상품을 받아 보실 수 있습니다.

  • 출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 상품을 기준으로 배송됩니다.

  • 군부대, 교도소 등 특정기관은 우체국 택배만 배송가능합니다.

  • 배송비는 업체 배송비 정책에 따릅니다.

  • - 도서 구매 시, 1만 원 이상 무료, 1만원 미만 2천 원 - 상품별 배송비가 있는 경우, 상품별 배송비 정책 적용