°£Æí°áÁ¦, ½Å¿ëÄ«µå û±¸ÇÒÀÎ
ÀÎÅÍÆÄÅ© ·Ôµ¥Ä«µå 5% (23,750¿ø)
(ÃÖ´ëÇÒÀÎ 10¸¸¿ø / Àü¿ù½ÇÀû 40¸¸¿ø)
ºÏÇǴϾð ·Ôµ¥Ä«µå 30% (17,500¿ø)
(ÃÖ´ëÇÒÀÎ 3¸¸¿ø / 3¸¸¿ø ÀÌ»ó °áÁ¦)
NH¼îÇÎ&ÀÎÅÍÆÄÅ©Ä«µå 20% (20,000¿ø)
(ÃÖ´ëÇÒÀÎ 4¸¸¿ø / 2¸¸¿ø ÀÌ»ó °áÁ¦)
Close

¼±Çü´ë¼ö¿Í ±º [¾çÀå]

¼Òµæ°øÁ¦

2013³â 9¿ù 9ÀÏ ÀÌÈÄ ´©Àû¼öÄ¡ÀÔ´Ï´Ù.

ÆǸÅÁö¼ö 78
?
ÆǸÅÁö¼ö¶õ?
»çÀÌÆ®ÀÇ ÆǸŷ®¿¡ ±â¹ÝÇÏ¿© ÆǸŷ® ÃßÀ̸¦ ¹Ý¿µÇÑ ÀÎÅÍÆÄÅ© µµ¼­¿¡¼­ÀÇ µ¶¸³ÀûÀÎ ÆǸŠÁö¼öÀÔ´Ï´Ù. ÇöÀç °¡Àå Àß Æȸ®´Â »óÇ°¿¡ °¡ÁßÄ¡¸¦ µÎ¾ú±â ¶§¹®¿¡ ½ÇÁ¦ ´©Àû ÆǸŷ®°ú´Â ´Ù¼Ò Â÷ÀÌ°¡ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÆǸŷ® ¿Ü¿¡µµ ´Ù¾çÇÑ °¡ÁßÄ¡·Î ±¸¼ºµÇ¾î ÃÖ±ÙÀÇ À̽´µµ¼­ È®Àνà À¯¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇØ´ç Áö¼ö´Â ¸ÅÀÏ °»½ÅµË´Ï´Ù.
Close
°øÀ¯Çϱâ
Á¤°¡

25,000¿ø

  • 25,000¿ø

    1,250P (5%Àû¸³)

ÇÒÀÎÇýÅÃ
Àû¸³ÇýÅÃ
  • S-Point Àû¸³Àº ¸¶ÀÌÆäÀÌÁö¿¡¼­ Á÷Á¢ ±¸¸ÅÈ®Á¤ÇϽŠ°æ¿ì¸¸ Àû¸³ µË´Ï´Ù.
Ãß°¡ÇýÅÃ
¹è¼ÛÁ¤º¸
  • 4/19(±Ý) À̳» ¹ß¼Û ¿¹Á¤  (¼­¿ï½Ã °­³²±¸ »ï¼º·Î 512)
  • ¹«·á¹è¼Û
ÁÖ¹®¼ö·®
°¨¼Ò Áõ°¡
  • À̺¥Æ®/±âȹÀü

  • ¿¬°üµµ¼­

  • »óÇ°±Ç

AD

Ã¥¼Ò°³

ÇкλýµéÀ» À§ÇÑ ¼±Çü´ë¼öÇÐ ±³Àç ¡º¼±Çü´ë¼ö¿Í ±º¡». Çà·Ä°ú º¤ÅÍ°ø°£, ¼±Çü»ç»ó, ±º, ºÐÇØÁ¤¸® µîÀÇ ³»¿ëÀ¸·Î ±¸¼ºµÇ¾úÀ¸¸ç ¿¬½À¹®Á¦¸¦ º»¹® ¾È¿¡ ±×´ë·Î ³ì¿©³½ Çü½ÄÀ» ¶ç°í ÀÖ´Ù.

ÃâÆÇ»ç ¼­Æò

°³Á¤ÆÇ¿¡¼­´Â ³í¸®ÀûÀ¸·Î ¿Ïº®ÇÏÁö ¸øÇÑ ºÎºÐÀ» º¸°­ÇÏ¿´°í Ã¥¿¡´Â ¾øÀ¸³ª ½ÇÁ¦ °­ÀÇ ¶§ ¾ð±ÞµÈ ¼³¸íÀ» Ãß°¡ÇÏ¿´´Ù. ƯÈ÷ ¡× 5.5ÀÇ ³»¿ëÀ» ¸¹ÀÌ º¸¿ÏÇÏ¿´°í ±âÁ¸¿¡ µ¶ÀÚµéÀÇ ¿äû¿¡ µû¶ó ¿¬½À¹®Á¦¸¦ º¸°­ÇÏ¿´´Ù. Çà °£¼Ò »ç´Ù¸® ²ÃÀÇ À¯ÀϼºÀº ´õ ±âÃÊÀûÀÎ Áõ¸íÀ¸·Î ´ëüÇÏ¿© ¡× 3.8·Î ¿Å°å´Ù. ¶Ç ÃÊÆÇ Á¦13ÀåÀÇ triangularizationµµ matrix size¿¡ °üÇÑ ±Í³³¹ý Áõ¸íÀ¸·Î ´ëüÇÏ¿© ¡× 7.3À¸·Î ¿Å°å°í, ÇкΠ2Çг⠼öÁØ¿¡ ÀûÇÕÇÏÁö ¾Ê¾Æ¼­ ½ÇÁ¦ °­ÀÇ¿¡¼­µµ »ý·«Çß´ø ÃÊÆÇÀÇ ¡×15.4(¡°¿Ö nondegenerateÀÎ °æ¿ì¸¸?¡±)´Â »èÁ¦ÇÏ¿´´Ù.

¸ñÂ÷

¸Ó¸®¸»
°³Á¤ÆÇ ¸Ó¸®¸»

Á¦1Àå Çà·Ä°ú Gauss ¼Ò°Å¹ý
1.1. Matrix
1.2. Gaussian Elimination
1.3. Elementary Matrix
1.4. Equivalence Class¿Í Partition

Á¦2Àå º¤ÅÍ°ø°£
2.1. Vector Space
2.2. Subspace
2.3. Vector SpaceÀÇ º¸±â
2.4. Isomorphism

Á¦3Àå ±âÀú¿Í Â÷¿ø
3.1. Linear Combination
3.2. ÀÏÂ÷µ¶¸³°ú ÀÏÂ÷Á¾¼Ó
3.3. Vector SpaceÀÇ Basis
3.4. BasisÀÇ Á¸Àç
3.5. Vector SpaceÀÇ Dimension
3.6. ¿ì¸®ÀÇ Ã¶ÇÐ
3.7. DimensionÀÇ º¸±â
3.8. Row-reduced Echelon Form

Á¦4Àå ¼±Çü»ç»ó
4.1. Linear Map
4.2. Linear MapÀÇ º¸±â
4.3. Linear Extension Theorem
4.4. Dimension Theorem
4.5. Rank Theorem

Á¦5Àå ±âº»Á¤¸®
5.1. Vector Space of Linear Maps
5.2. ±âº»Á¤¸®: Ç¥ÁرâÀúÀÇ °æ¿ì
5.3. ±âº»Á¤¸®: ÀϹÝÀûÀÎ °æ¿ì
5.4. ±âº»Á¤¸®ÀÇ °á°ú¿Í ¿ì¸®ÀÇ Ã¶ÇÐ
5.5. Change of Bases
5.6. Similarity Relation

Á¦6Àå Çà·Ä½Ä
6.1. Alternating Multilinear Form
6.2. Symmetric Group
6.3. DeterminantÀÇ Á¤ÀÇ I
6.4. DeterminantÀÇ ¼ºÁú
6.5. DeterminantÀÇ Á¤ÀÇ II
6.6. Cramer¡¯s Rule
6.7. Adjoint Matrix

Á¦7Àå Ư¼º´ÙÇ׽İú ´ë°¢È­
7.1. Eigen-vector¿Í Eigen-value
7.2. Diagonalization
7.3. Triangularization
7.4. Cayley-Hamilton Theorem
7.5. Minimal Polynomial
7.6. Direct Sum°ú Eigen-space
Decomposition

Á¦8Àå ºÐÇØÁ¤¸®
8.1. Polynomial
8.2. T-Invariant Subspace
8.3. Primary Decomposition Theorem
8.4. Diagonalizability
8.5. T-Cyclic Subspace
8.6. Cyclic Decomposition Theorem
8.7. Jordan Canonical Form

Á¦9Àå RnÀÇ Rigid Motion 241
9.1. Rn-°ø°£ÀÇ Dot Product
9.2. Rn-°ø°£ÀÇ Rigid Motion
9.3. Orthogonal Operator / Matrix
9.4. Reflection
9.5. O(2)¿Í SO(2)
9.6. SO(3)¿Í SO(n)

Á¦10Àå ³»Àû °ø°£
10.1. Inner Product Space
10.2. Inner Product SpaceÀÇ ¼ºÁú
10.3. Gram-Schmidt Orthogonalization
10.4. Standard Basis Óß Orthonormal Basis
10.5. Inner Product SpaceÀÇ Isomorphism
10.6. Orthogonal Group°ú Unitary Group
10.7. Adjoint Matrix¿Í ±× ÀÀ¿ë

Á¦11Àå ±º
11.1. Binary Operation°ú Group
11.2. GroupÀÇ Ãʺ¸Àû ¼ºÁú
11.3. Subgroup
11.4. ÇкΠ´ë¼öÇÐÀÇ Úâ
11.5. Group Isomorphism
11.6. Group Homomorphism
11.7. Cyclic Group
11.8. Group°ú HomomorphismÀÇ º¸±â
11.9. Linear Group

Á¦12Àå Quotient
12.1. Coset
12.2. Normal Subgroup°ú Quotient Group
12.3. Quotient Space
12.4. Isomorphism Theorem
12.5. Triangularization II

Á¦13Àå Bilinear Form
13.1. Bilinear Form
13.2. Quadratic Form
13.3. Orthogonal Group°ú Symplectic Group
13.4. O(1, 1)°ú O(3, 1)
13.5. Non-degenerate Bilinear Form
13.6. Dual Space¿Í Dual Map
13.7. Duality
13.8. B-Identification
13.9. Transpose Operator

Á¦14Àå Hermitian Form
14.1. Hermitian Form
14.2. Non-degenerate Hermitian Form
14.3. H-Identification°ú Adjoint Operator

Á¦15Àå Spectral Theorem
15.1. Ç¥±â¹ý°ú ¿ë¾î
15.2. Normal Operator
15.3. Symmetric Operator
15.4. Orthogonal Operator
15.5. Epilogue

Á¦16Àå Topology ¸Àº¸±â
16.1. Matrix Group Isomorphism
16.2. Compactness¿Í Connectedness

Âü°í ¹®Çå
Ç¥±â¹ý ã¾Æº¸±â
ã¾Æº¸±â

ÀÌ »óÇ°ÀÇ ½Ã¸®Áî

(ÃÑ 1±Ç / ÇöÀ籸¸Å °¡´Éµµ¼­ 1±Ç)

¼±ÅÃÇÑ »óÇ° ºÏÄ«Æ®´ã±â

Àü°øµµ¼­/´ëÇб³Àç ºÐ¾ß¿¡¼­ ¸¹Àº ȸ¿øÀÌ ±¸¸ÅÇÑ Ã¥

    ¸®ºä

    10.0 (ÃÑ 0°Ç)

    100ÀÚÆò

    ÀÛ¼º½Ã À¯ÀÇ»çÇ×

    ÆòÁ¡
    0/100ÀÚ
    µî·ÏÇϱâ

    100ÀÚÆò

    10.0
    (ÃÑ 0°Ç)

    ÆǸÅÀÚÁ¤º¸

    • ÀÎÅÍÆÄÅ©µµ¼­¿¡ µî·ÏµÈ ¿ÀǸ¶ÄÏ »óÇ°Àº ±× ³»¿ë°ú Ã¥ÀÓÀÌ ¸ðµÎ ÆǸÅÀÚ¿¡°Ô ÀÖÀ¸¸ç, ÀÎÅÍÆÄÅ©µµ¼­´Â ÇØ´ç »óÇ°°ú ³»¿ë¿¡ ´ëÇØ Ã¥ÀÓÁöÁö ¾Ê½À´Ï´Ù.

    »óÈ£

    (ÁÖ)±³º¸¹®°í

    ´ëÇ¥ÀÚ¸í

    ¾Èº´Çö

    »ç¾÷ÀÚµî·Ï¹øÈ£

    102-81-11670

    ¿¬¶ôó

    1544-1900

    ÀüÀÚ¿ìÆíÁÖ¼Ò

    callcenter@kyobobook.co.kr

    Åë½ÅÆǸž÷½Å°í¹øÈ£

    01-0653

    ¿µ¾÷¼ÒÀçÁö

    ¼­¿ïƯº°½Ã Á¾·Î±¸ Á¾·Î 1(Á¾·Î1°¡,±³º¸ºôµù)

    ±³È¯/ȯºÒ

    ¹ÝÇ°/±³È¯ ¹æ¹ý

    ¡®¸¶ÀÌÆäÀÌÁö > Ãë¼Ò/¹ÝÇ°/±³È¯/ȯºÒ¡¯ ¿¡¼­ ½Åû ¶Ç´Â 1:1 ¹®ÀÇ °Ô½ÃÆÇ ¹× °í°´¼¾ÅÍ(1577-2555)¿¡¼­ ½Åû °¡´É

    ¹ÝÇ°/±³È¯°¡´É ±â°£

    º¯½É ¹ÝÇ°ÀÇ °æ¿ì Ãâ°í¿Ï·á ÈÄ 6ÀÏ(¿µ¾÷ÀÏ ±âÁØ) À̳»±îÁö¸¸ °¡´É
    ´Ü, »óÇ°ÀÇ °áÇÔ ¹× °è¾à³»¿ë°ú ´Ù¸¦ °æ¿ì ¹®Á¦Á¡ ¹ß°ß ÈÄ 30ÀÏ À̳»

    ¹ÝÇ°/±³È¯ ºñ¿ë

    º¯½É ȤÀº ±¸¸ÅÂø¿À·Î ÀÎÇÑ ¹ÝÇ°/±³È¯Àº ¹Ý¼Û·á °í°´ ºÎ´ã
    »óÇ°À̳ª ¼­ºñ½º ÀÚüÀÇ ÇÏÀÚ·Î ÀÎÇÑ ±³È¯/¹ÝÇ°Àº ¹Ý¼Û·á ÆǸÅÀÚ ºÎ´ã

    ¹ÝÇ°/±³È¯ ºÒ°¡ »çÀ¯

    ·¼ÒºñÀÚÀÇ Ã¥ÀÓ ÀÖ´Â »çÀ¯·Î »óÇ° µîÀÌ ¼Õ½Ç ¶Ç´Â ÈÑ¼ÕµÈ °æ¿ì
    (´ÜÁö È®ÀÎÀ» À§ÇÑ Æ÷Àå ÈѼÕÀº Á¦¿Ü)

    ·¼ÒºñÀÚÀÇ »ç¿ë, Æ÷Àå °³ºÀ¿¡ ÀÇÇØ »óÇ° µîÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
    ¿¹) È­ÀåÇ°, ½ÄÇ°, °¡ÀüÁ¦Ç°(¾Ç¼¼¼­¸® Æ÷ÇÔ) µî

    ·º¹Á¦°¡ °¡´ÉÇÑ »óÇ° µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
    ¿¹) À½¹Ý/DVD/ºñµð¿À, ¼ÒÇÁÆ®¿þ¾î, ¸¸È­Ã¥, ÀâÁö, ¿µ»ó È­º¸Áý

    ·½Ã°£ÀÇ °æ°ú¿¡ ÀÇÇØ ÀçÆǸŰ¡ °ï¶õÇÑ Á¤µµ·Î °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì

    ·ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚº¸È£¿¡ °üÇÑ ¹ý·üÀÌ Á¤ÇÏ´Â ¼ÒºñÀÚ Ã»¾àöȸ Á¦ÇÑ ³»¿ë¿¡ ÇØ´çµÇ´Â °æ¿ì

    »óÇ° Ç°Àý

    °ø±Þ»ç(ÃâÆÇ»ç) Àç°í »çÁ¤¿¡ ÀÇÇØ Ç°Àý/Áö¿¬µÉ ¼ö ÀÖÀ½

    ¼ÒºñÀÚ ÇÇÇغ¸»ó
    ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó

    ·»óÇ°ÀÇ ºÒ·®¿¡ ÀÇÇÑ ±³È¯, A/S, ȯºÒ, Ç°Áúº¸Áõ ¹× ÇÇÇغ¸»ó µî¿¡ °üÇÑ »çÇ×Àº ¼ÒºñÀÚºÐÀïÇØ°á ±âÁØ (°øÁ¤°Å·¡À§¿øȸ °í½Ã)¿¡ ÁØÇÏ¿© 󸮵Ê

    ·´ë±Ý ȯºÒ ¹× ȯºÒÁö¿¬¿¡ µû¸¥ ¹è»ó±Ý Áö±Þ Á¶°Ç, ÀýÂ÷ µîÀº ÀüÀÚ»ó°Å·¡ µî¿¡¼­ÀÇ ¼ÒºñÀÚ º¸È£¿¡ °üÇÑ ¹ý·ü¿¡ µû¶ó ó¸®ÇÔ

    (ÁÖ)KGÀ̴Ͻýº ±¸¸Å¾ÈÀü¼­ºñ½º¼­ºñ½º °¡ÀÔ»ç½Ç È®ÀÎ

    (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º´Â ȸ¿ø´ÔµéÀÇ ¾ÈÀü°Å·¡¸¦ À§ÇØ ±¸¸Å±Ý¾×, °áÁ¦¼ö´Ü¿¡ »ó°ü¾øÀÌ (ÁÖ)ÀÎÅÍÆÄÅ©Ä¿¸Ó½º¸¦ ÅëÇÑ ¸ðµç °Å·¡¿¡ ´ëÇÏ¿©
    (ÁÖ)KGÀ̴Ͻýº°¡ Á¦°øÇÏ´Â ±¸¸Å¾ÈÀü¼­ºñ½º¸¦ Àû¿ëÇÏ°í ÀÖ½À´Ï´Ù.

    ¹è¼Û¾È³»

    • ±³º¸¹®°í »óÇ°Àº Åùè·Î ¹è¼ÛµÇ¸ç, Ãâ°í¿Ï·á 1~2Àϳ» »óÇ°À» ¹Þ¾Æ º¸½Ç ¼ö ÀÖ½À´Ï´Ù.

    • Ãâ°í°¡´É ½Ã°£ÀÌ ¼­·Î ´Ù¸¥ »óÇ°À» ÇÔ²² ÁÖ¹®ÇÒ °æ¿ì Ãâ°í°¡´É ½Ã°£ÀÌ °¡Àå ±ä »óÇ°À» ±âÁØÀ¸·Î ¹è¼ÛµË´Ï´Ù.

    • ±ººÎ´ë, ±³µµ¼Ò µî ƯÁ¤±â°üÀº ¿ìü±¹ Åù踸 ¹è¼Û°¡´ÉÇÕ´Ï´Ù.

    • ¹è¼Ûºñ´Â ¾÷ü ¹è¼Ûºñ Á¤Ã¥¿¡ µû¸¨´Ï´Ù.

    • - µµ¼­ ±¸¸Å ½Ã 15,000¿ø ÀÌ»ó ¹«·á¹è¼Û, 15,000¿ø ¹Ì¸¸ 2,500¿ø - »óÇ°º° ¹è¼Ûºñ°¡ ÀÖ´Â °æ¿ì, »óÇ°º° ¹è¼Ûºñ Á¤Ã¥ Àû¿ë